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Abstract

Equilibrium constrained problems form a special class of mathematical programs
where the decision variables satisfy a finite number of constraints together with
an equilibrium condition. Optimization problems with a variational inequality
constraint, bilevel problems and semi-infinite programs can be seen as particular
cases of equilibrium constrained problems. Such models appear in many practical
applications.

Equilibrium constraint problems can be written in bilevel form with possi-
bly a finite number of extra inequality constraints. This opens the way to solve
these programs by applying the so-called Karush-Kuhn-Tucker approach. Here
the lower level problem of the bilevel program is replaced by the Karush-Kuhn-
Tucker condition, leading to a mathematical program with complementarity con-
straints (MPCC). Unfortunately, MPCC problems cannot be solved by classical
algorithms since they do not satisfy the standard regularity conditions. To solve
MPCCs one has tried to conceive appropriate modifications of standard methods.
For example sequential quadratic programming, penalty algorithms, regulariza-
tion and smoothing approaches.

The aim of this thesis is twofold. First, as a basis, MPCC problems will
be investigated from a structural and generical viewpoint. We concentrate on a
special parametric smoothing approach to solve these programs. The convergence
behavior of this method is studied in detail. Although the smoothing approach is
widely used, our results on existence of solutions and on the rate of convergence
are new. We also derive (for the first time) genericity results for the set of
minimizers (generalized critical points) for one-parametric MPCC.

In a second part we will consider the MPCC problem obtained by applying the
KKT-approach to equilibrium constrained programs and bilevel problems. We
will analyze the generic structure of the resulting MPCC programs and adapt the
related smoothing method to these particular cases. All corresponding results are
new.
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Chapter 1

Introduction

1.1 Introduction

An Equilibrium Constrained optimization problem (EC) is a mathematical pro-
gram such that a part of the variables should satisfy an equilibrium condition. In
its simplest form, an equilibrium condition is given by the critical point equation
∇φ(y) = 0. So the simplest prototype of an EC is:

min f(x, y) (1.1.1)

s.t. ∇yφ(x, y) = 0,

where f : Rn×Rm → R, φ : Rn×Rm → R and∇yφ denotes the partial derivatives
of φ with respect to y. For the case that φ(x, y) is convex in y, it can be expressed
equivalently as a so-called Bilevel problem (BL):

min f(x, y)
s.t. y solves min

y∈Rm
φ(x, y).

More generally, we are led to consider BL problems of the following form:

min f(x, y)
s.t. (x, y) ∈ C,

y solves Q(x),
Q(x) : min

y∈Y (x)
φ(x, y),

(1.1.2)

where f, φ : Rn × Rm → R and Y (x) is the feasible set the lower level problems
Q(x) depending on x.

Another classical example of BL arises when considering an equilibrium point
in a 0-sum game with two players. Let us assume that player i may choose
strategies yi from the set Yi ⊂ Rm, i = 1, 2, and that the utility functions are
g(y1, y2) for player 1 and −g(y1, y2) for player 2, if player i chooses strategy
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yi, i = 1, 2. The Nash equilibrium points (ȳ1, ȳ2) are saddle points of g(y1, y2),
i.e.,

g(ȳ1, y2) ≥ g(ȳ1, ȳ2) ≥ g(y1, ȳ2), for all y1 ∈ Y1, y2 ∈ Y2,

or
ȳ1 solves max

y1∈Y1

g(y1, ȳ2) and ȳ2 solves min
y2∈Y2

g(ȳ1, y2).

If we want to minimize a function f(x, y1, y2) under the condition that (y1, y2)
are Nash equilibrium points of the previous game, the model becomes a bilevel
problem of the type:

min f(x, ȳ1, ȳ2)
s.t. ȳ1 solves max

y1∈Y1

g(y1, ȳ2),

ȳ2 solves min
y2∈Y2

g(ȳ1, y2)

with functions f : Rn × Rm × Rm → R, g : Rm × Rm → R.
More generally we could consider bilevel problems of the form:

min f(x, ȳ1, . . . , ȳk)
s.t. (x, ȳ1, ȳk) ∈ C,

ȳi solves Qi(x), where
Qi(x) : min

yi∈Yi(x)
φi(x, ȳ1, . . . , ȳi−1, yi, ȳi+1, . . . , ȳk), i = 1, . . . , k.

For simplicity, in this thesis we will only consider the case k = 1, i.e. bilevel
problems of type (1.1.2).

Under smoothness and convexity conditions, a minimizer y of the problem
Q(x) in (1.1.2) satisfies the inequality ∇yφ(x, y)T (z − y) ≥ 0, ∀z ∈ Y (x). More
generally we examine the so-called variational inequalities

V I : Find y ∈ Y (x) such that Φ(x, y)T (z − y) ≥ 0, ∀z ∈ Y (x),

and we are led to optimization problems of the form

PV I : min f(x, y)
s.t. (x, y) ∈ C,

y ∈ Y (x),
Φ(x, y)T (z − y) ≥ 0, ∀z ∈ Y (x),

or more generally to

PEC : min f(x, y)
s.t. (x, y) ∈ C,

y ∈ Y (x),
φ(x, y, z) ≥ 0, ∀z ∈ Y (x),

where f : Rn × Rm → R, φ : Rn × Rm × Rm → R.

2



Remark 1.1.1 PEC can be regarded as a particular case of a Generalized Semi-
infinite Optimization Problem

GSIP : min {f(x, y) | (x, y) ∈ C, φ(x, y, z) ≥ 0, ∀z ∈ Y (x)} . (1.1.3)

Note that PEC contains the additional condition y ∈ Y (x).

The problems considered so far will be called equilibrium constrained problems.
We emphasize that in general it is difficult to solve these problems. Due to the

two level structure, even to check feasibility, we have to compute a (global) min-
imizer of a general optimization problem or a solution of a variational inequality
problem.

In this thesis we will deal with the analytic and generic structure of problems
PBL, PV I , and PEC and we are also interested in numerical solution methods.
For numerical purposes it is natural to assume that the involved sets Y (x) and C
are described analytically. Throughout the thesis we will assume that these sets
are defined as:

Y (x) = {y ∈ Rm | vi(x, y) ≥ 0, i = 1, . . . , l} , (1.1.4)

C = {(x, y) ∈ Rn × Rm | gj(x, y) ≥ 0, j = 1, . . . , q} , (1.1.5)

with given functions vi and gj, i = 1, . . . , l, j = 1, . . . , q.

So we will consider bilevel problems of the form

PBL : min
x,y

f(x, y)

s.t. gj(x, y) ≥ 0, j = 1, . . . , q,
y solves Q(x),

Q(x) : min
y

φ(x, y)

s.t. y ∈ Y (x)

(1.1.6)

with sets Y (x) defined as in (1.1.4) and functions f, φ, vi, gj : Rn × Rm → R,
i = 1, . . . , l, j = 1, . . . , q. The parametric problem Q(x) will be called the lower
level problem.

Problems with equilibrium constraints are examined in the form

PEC : min
x,y

f(x, y)

s.t. gj(x, y) ≥ 0, j = 1, . . . , q,
y ∈ Y (x),

φ(x, y, z) ≥ 0, ∀z ∈ Y (x),

(1.1.7)

where f, vi, gj : Rn×Rm → R, i = 1, . . . , l, j = 1, . . . , q, φ : Rn×Rm×Rm → R
and Y (x) is defined as in (1.1.4).
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As a particular case, in which the function φ satisfies the condition
φ(x, y, y) = 0, ∀(x, y), we consider the problem with variational inequalities
constraints

PV I : min
x,y

f(x, y)

s.t. gj(x, y) ≥ 0, j = 1, . . . , q,
y ∈ Y (x),

Φ(x, y)T (z − y) ≥ 0, ∀z ∈ Y (x).

(1.1.8)

Another related type of optimization problems are the so-called Mathematical
Programs with Complementarity Constraints (MPCC)

PCC : min f(x)
s.t. gj(x) ≥ 0, j = 1, . . . , q,

ri(x) ≥ 0, i = 1, . . . , l,
si(x) ≥ 0, i = 1, . . . , l,

ri(x)si(x) = 0, i = 1, . . . , l.

(1.1.9)

As we shall see later on, we will obtain problems of this type if we apply the
Karush Kuhn Tucker (KKT) approach to the problems PBL, PV I and PEC . As
a solution method for problems (1.1.9), in the present thesis we will investigate
the so-called one-parametric smoothing approach. In this approach, we consider
the perturbation of PCC (1.1.9)

Pτ : min f(x)
s.t. gj(x) ≥ 0, j = 1, . . . , q,

ri(x) ≥ 0, i = 1, . . . , l,
si(x) ≥ 0, i = 1, . . . , l,

ri(x)si(x) = τ, i = 1, . . . , l,

(1.1.10)

where τ > 0 is the perturbation parameter. Then Pτ is solved for τ → 0+.

1.2 Relations between the problems

We have already pointed out some connections between the problems PV I , PEC ,
PBL and PCC . The aim of this section is to analyze these relations further. We
assume obvious differentiability conditions on the problem functions.

Let us consider the relations between PEC and PBL (see also Stein and Still
[59]). By using the fact:

φ(x, y, z) ≥ 0, ∀z ∈ Y (x) ⇔ z ∈ arg min
u∈Y (x)

φ(x, y, u) and φ(x, y, z) ≥ 0,

4



the problem PEC turns into the bilevel problem:

min
x,y,z

f(x, y)

s.t. gj(x, y) ≥ 0, j = 1, . . . , q,
y ∈ Y (x),

φ(x, y, z) ≥ 0,
z solves Q(x, y),

Q(x, y) : minφ(x, y, u)
s.t. u ∈ Y (x).

(1.2.1)

In the particular case of PEC where φ(x, y, y) = 0, ∀y (e.g. the problems PV I)
we can eliminate the variable z as follows. In view of φ(x, y, y) = 0, the condition
φ(x, y, z) ≥ 0, ∀z ∈ Y (x), is equivalent with the fact that y is a global solution
of Q(x, y). So, in this case, PEC is equivalent with:

min
x,y

f(x, y)

s.t. gj(x, y) ≥ 0, j = 1, . . . , q,
y ∈ Y (x),

y solves Q(x, y),
Q(x, y) : min

z
φ(x, y, z)

s.t. z ∈ Y (x).

(1.2.2)

Note that this problem has a more complicated structure than PBL, since it
contains a sort of fixed point condition. Indeed, the lower level problem Q(x, y)
depends on y, which at the same time should solve Q(x, y). For a comparison
from the structural and generical viewpoint between linear PBL and PEC , we refer
to Birbil, Bouza, Frenk and Still [7] and Still [61].

We now apply the KKT approach to the above bilevel problems. The idea is
to replace the minimum condition for the lower level problem Q(x), or Q(x, y),
by the KKT optimality condition. This will lead to problems of type PCC .

We begin with the standard bilevel problem PBL in (1.1.6). Let some con-
straint qualification such as MFCQ (see Definition 2.2.2) hold for the lower level
problem Q(x). Then a (local) minimizer of Q(x) will necessarily satisfy the
KKT conditions, i.e., the feasible points (x, y) of PBL will fulfill the following
constraints with some multiplier vector λ ∈ Rl:

∇yφ(x, y)−
l∑

i=1

λi∇yvi(x, y) = 0,

vi(x, y) ≥ 0, i = 1, . . . , l, (1.2.3)

λi ≥ 0, i = 1, . . . , l,

vi(x, y)λi = 0, i = 1, . . . , l.

5



Consequently, as a relaxation of PBL, we obtain:

min
x,y,λ

f(x, y)

s.t. gj(x, y) ≥ 0, j = 1, . . . , q,

∇yφ(x, y)−
l∑

i=1

λi∇yvi(x, y) = 0,

vi(x, y) ≥ 0, i = 1, . . . , l,
λi ≥ 0, i = 1, . . . , l,

λivi(x, y) = 0, i = 1, . . . , l.

(1.2.4)

If we apply the same arguments to the bilevel form of PEC (see (1.2.1)) we are
led to the problem:

min
x,y,z,λ

f(x, y)

s.t. gj(x, y) ≥ 0, j = 1, . . . , q,
vi(x, y) ≥ 0, i = 1, . . . , l,

∇zφ(x, y, z)−
l∑

i=1

λi∇zvi(x, z) = 0,

vi(x, z) ≥ 0, i = 1, . . . , l,
λi ≥ 0, i = 1, . . . , l,

λivi(x, z) = 0, i = 1, . . . , l,
φ(x, y, z) ≥ 0.

(1.2.5)

The KKT approach for the special case φ(x, y, y) = 0, ∀y ∈ Y (x), i.e., for (1.2.2)
gives:

min
x,y,λ

f(x, y)

s.t. gj(x, y) ≥ 0, j = 1, . . . , q,
vi(x, y) ≥ 0, i = 1, . . . , l,

∇zφ(x, y, y)−
l∑

i=1

λi∇yvi(x, y) = 0,

λi ≥ 0, i = 1, . . . , l,
λivi(x, y) = 0, i = 1, . . . , l.

(1.2.6)

Obviously, only under some constraint qualification on the feasible set Y (x) in
the lower level, we can guarantee that these schemes are relaxations of the feasible
set for the original problems PBL and PEC . Unfortunately as we will see later on,
the condition MFCQ cannot be expected to hold generically for the lower level
problem.

If Q(x) is a convex problem satisfying MFCQ, then the original problem PBL

and problem (1.2.4) are equivalent. Under similar assumptions on Q(x, y), the
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problem PEC in (1.2.1) is equivalent with the KKT relaxation (1.2.5) and, in case
φ(x, y, y) = 0, ∀y ∈ Y (x), x ∈ Rn, the equivalence holds between PEC in (1.2.2)
and problem (1.2.6).

So, this KKT approach opens the way for solving PBL and PEC via programs
with complementarity constraints of type PCC (1.1.9).

1.3 Summary of the results

In the present subsection we give a summary of the thesis. We try to sketch the
results also in comparison with earlier investigations. Throughout the exposition
all earlier results (lemmas, theorems, propositions) are indicated by giving (at
least) one reference. All results where such a reference does not appear, are (at
least for a substantial part) new.

In essence, the main aim of the thesis is as follows:

• MPCC problems (cf. (1.1.9)) and the parametric smoothing approach for
solving these programs (cf. (1.1.10)) are investigated from a structural and
generical viewpoint.

• We apply the KKT approach to different types of equilibrium constrained
problems (VI, BL and EC-problems). Thereby the equilibrium constrained
programs are transformed into a problem of MPCC type with special struc-
ture, cf. Section 1.2. We analyze the generic properties of the resulting
MPCC programs and study the behavior of the related parametric smooth-
ing method.

The investigations on the analytic and generic structure of mathematical pro-
grams, form the basis for the development of any general purpose solution method.
In fact the generic structure reveals the typical properties of a problem.

More detailed, the thesis is organized as follows. In Section 1.4, some appli-
cations of equilibrium constrained problems are presented.

The investigations of the whole exposition are based on the deep genericity
results for (non-parametric and parametric) finite programming problems devel-
oped during the last two decades, starting with the work of Jongen, Jonker and
Twilt in [27]-[28]. Further results appear in Guddat, Guerra and Jongen in [22],
Gómez, Guddat, Jongen, Rückmann and Solano in [21], and Jongen, Jonker and
Twilt in [29]. The basic concepts and results are outlined in Chapter 2.

Chapter 3 is devoted to Variational Inequality problems (VI). In Section 3.2,
the KKT approach to solve VI is described. Section 3.3 summarizes the genericity
results of Gómez [19] for this approach, applied to one-parametric VI problems.
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In Section 3.4, we extend two different types of parametric embeddings for nonlin-
ear programs (the standard embedding and the penalty embedding, see Gómez,
Guddat, Jongen, Rückmann and Solano [21]) to the VI case. We analyze these
solution methods from a structural and generical perspective. As new results, we
can mention Proposition 3.2.1 (partially new), Example 3.2.2 and the genericity
analysis of the one-parametric embeddings in Propositions 3.4.1-3.4.4.

Chapter 4 deals with general MPCC-problems of the form PCC in (1.1.9).
This is a topic of intensive recent research, see e.g. Scheel and Scholtes [49],
Scholtes [51], Lin and Fukushima [37], Hu and Ralph [24] and the references in
these contributions.

Firstly we discuss the structure of the feasible set in Section 4.2 (see e.g. Luo,
Pang and Ralph [42]) and give some well-known necessary optimality conditions
in Section 4.3 (see Flegel and Kanzow [14]). Section 4.4 derives other necessary
and sufficient conditions for minimizers of order one and two of MPCC, based
on the disjunctive structure, and sketches basic genericity results. Partially these
results are due to Scholtes and Stöhr [53]. The optimality conditions for minimizer
of order one in Theorem 4.4.2 and 4.4.3 are new (in the MPCC context) and also
the only part of Theorem 4.4.4. Section 4.5 is concerned with the convergence
behavior of the parametric smoothing approach Pτ for τ → 0 in (1.1.10). This
approach has been studied in Fukushima and Pang [16] from another point of
view. It has been investigated under which conditions the KKT solutions of Pτ

converges to a B-stationary point of PCC . In Stein and Still [60], such results
were obtained for a similar (interior point) approach for solving semi-infinite
programming problems. In this thesis we derive new convergence results for the
whole feasible set and for (local) solutions x(τ) of Pτ for τ → 0, see Lemmas 4.5.2,
4.5.3 and Theorem 4.5.1. It is shown that under natural assumptions the rate of
convergence is O(

√
τ). We also give some illustrative Examples 4.5.2-4.5.3.

In Section 4.6 we prove that generically Pτ is regular in the sense of Jon-
gen, Jonker, Twilt (JJT), see Definition 2.4.7. These investigations are entirely
new, see as main results Propositions 4.6.1-4.6.2. Section 4.7 deals with one-
parametric MPCC problems. In the first part we discuss the one-parametric and
non-parametric (feasibility) problem for the special case n = l. The related new
results are given in Propositions 4.7.1-4.7.4. The second part is devoted to the
general one-parametric MPPC problem. In Hu and Ralph [24], this problem has
been analyzed only locally around non-degenerate minimizers. In this thesis, we
develop the global theory and, based on the results of Jongen, Jonker and Twilt
in [27]-[28] for nonlinear programs, we are able to describe the characteristics of
generic one parametric MPCC programs and their singularities. The correspond-
ing new results are contained in Lemma 4.7.3, Theorem 4.7.1. The analysis of
the behavior of the set of stationary points around each singularity is also new.

Chapter 5 is devoted to bilevel problems, see (1.1.2). These problems have
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been extensively studied during the last two decades. We refer the reader e.g.
to Shimizu and Aiyoshi [55], Bard [3], Luo, Pang and Ralph [42], Dempe [11]
and the references therein. It is well-known that in general the structure of BL
does not allow a local reduction to common finite programs. So special solution
methods have to be conceived.

In this thesis we consider the KKT approach to solve BL which consists of
a transformation of BL into a special structured MPCC problem (cf. (1.2.4)).
This approach has been discussed earlier see e.g. Shimizu and Aiyoshi [55] for
the general case and Stein [58], in connection with semi-infinite problems.

The new contribution of the present thesis is to analyze for the first time the
MPCC form of BL programs from a generical viewpoint. This allows to apply
the results obtained for MPCC problems in Chapter 4. All results of Section 5.2
and 5.3 are new.

In Theorem 5.2.1 of Section 5.2, we show that generically MPCC-LICQ (see
Definition 4.3.1) holds at all feasible points of the MPCC form of BL. However
a counterexample reveals that, in contrast to general MPCC problems, for the
MPCC form of BL programs the condition MPCC-SC in Definition 4.3.3, is not
generically fulfilled at minimizers. It follows that the structural difficulties of
the original BL problem partially reappear in the MPCC formulation. Roughly
speaking this may happen at solutions of BL where a local reduction to a finite
standard problem is not possible.

Theorem 5.2.2 describes the precise generic structure around a critical point.
Corollaries 5.2.3-5.2.5 reveal the relation between (the solutions of) the original
BL and the MPCC form. An example describes a possible bad behavior of the
KKT approach. It appears that even in the case of convex lower level problems
it may happen that (x, y, λ) is a minimizer of the KKT form but that the feasible
point (x, y) is not a minimizer of the original problem. This bad behavior is
stable w.r.t. small smooth perturbations. Based on the results of Section 5.2, in
Section 5.3 we discuss the parametric approach for solving the MPCC formulation
of BL. This leads to convergence results in Proposition 5.3.1 Also here a stable
counterexample (Example 5.3.1) shows that it is not always possible to approach
each minimizer (x, y, λ) of the KKT formulation by the parametric smoothing
procedure.

A part of our investigation was not yet completely finished at the time when
the preliminary version of the thesis was send to the members of the Doctorate
Committee. In the meantime this part has been completed and we would like to
add it to the thesis as a supplement (Chapter 6).

In Chapter 6 equilibrium constrained problems EC (see (1.1.7)) are examined.
Also this class of mathematical programs is a topic of intensive research in the
past and at present. We refer the reader e.g. to the books Outrata, Kocvara and
Zowe [43] and Luo, Pang and Ralph [42].

Here we are mainly interested in the structural and generical properties of such
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problems which are closely related to generalized semi-infinite programs (GSIP).
In fact, EC programs can be seen as GSIP in the unknown (x, y) (see (1.1.3))
with the extra condition y ∈ Y (x). Many investigations have been conducted on
stability and the generic structure of semi-infinite problems. See e.g. Jongen and
Zwier [34]-[33], Jongen, Twilt and Weber [32], Stein [57], Jongen and Rückmann
[30] and Jongen and Rückmann [31] for common semi-infinite problems (SIP)
(i.e. Y (x) = Y, ∀x) and Stein [58], Still [61], for GSIP.

In this thesis we are mainly devoted to the study of the generic properties of
the KKT approach for solving EC. We continue the investigations started with
the paper Birbil, Bouza, Frenk and Still [7] where only a special (linear) case was
considered.

The Chapter is organized as follows. In Section 6.2 the topological structure
of the feasible set of EC is discussed. As in GSIP it appears that the feasible
set need even not to be closed in general. The results here were obtained in
[7] (see also Stein [58] for GSIP). In Section 6.3 and 6.4 the MPCC formulation
of EC (cf. (1.2.5) is analyzed for the first time from a generical viewpoint. A
stable counterexample, Example 6.3.1, reveals that in contradiction to BL here
the condition MPCC-LICQ (see Definition 4.3.1) is not generically fulfilled for
all feasible points. This is due to the extra constraint y ∈ Y (x) in EC.

So, in Section 6.4 we restrict ourselves to the class of EC problems with con-
vex lower level program Q(x, y) (see (1.2.1)) and satisfying additional regularity
assumptions. For this class the MPCC formulation of EC (cf. (1.2.5)) is proven
to be generically regular in the MPCC sense, see Definition 4.3.3. The corre-
sponding new results are contained in Proposition 6.4.1 and Theorem 6.4.1.

In Section 6.5, we consider the special linear case, i.e. EC programs such
that the MPCC form is given by only linear functions. Such problems have
also been studied in [7] where the generic structure of the feasible set of the
original EC program has been described. For this linear class, the structure of
the KKT approach for EC appears to be similar to the structure for (linear)
bilevel problems. So, by modifying the ideas in the proof of Theorems 5.2.1 and
5.2.2, we can show in Proposition 6.5.1 that MPCC-LICQ is a generic property
and in Theorem 6.5.1, we describe the structure around local minimizers in the
generic situation. The consequences of these results for the original EC program
are shown in Corollary 6.5.2 and Proposition 6.5.2.

Finally based on the obtained genericity results, we describe a new algorithm
for solving linear EC problems. The algorithm makes use of the MPCC form
and performs descent steps on (faces of) the feasible set of the corresponding
program. The finite algorithm (eventually) ends up with a local minimizer of the
original EC.
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1.4 Applications

In this section we present a few applications of equilibrium constrained problems.
We will consider two main fields, namely applications in economics and applica-
tions in mathematical physics. They are mainly taken from [43], see [3] for other
examples.

1.4.1 Applications in economics

We start with two situations where optimization problems with equilibrium con-
straints arise, the Cournot competitive equilibrium and the generalized Nash
equilibrium. We begin with some notations and present different ways of model-
ing Nash equilibrium points.

Nash equilibrium

Consider a game with n players. For i = 1, 2, . . . , n the set of all possible strategies
for player i is denoted by Yi ⊂ Rmi . If for all j, the player j chooses strategy
yj ∈ Yj, the payoff for player i is equal to ui(y1, . . . , yn). We assume ui to be a
concave C1-function in the variable yi.

A Nash equilibrium point y = (y1, . . . , yn) satisfies:

yi solves max
yi∈Yi

ui(y1, . . . , yi−1, yi, yi+1, . . . yn), ∀i.

In case that, for any i, the set Yi is a non-empty, closed and convex set, the previ-
ous optimization problems are convex. Consequently, another way of expressing
that y is a Nash equilibrium is via the following variational inequality. The point
y is a Nash equilibrium if and only if:

y ∈ Y,
such that 〈F (y), v − y〉 ≥ 0, ∀v ∈ Y = Y1 × Y2 × . . .× Yn

(1.4.1)

where

F (y) =

−∇y1u1(y)
...

−∇ynun(y)

 .

Now, as a first application, we will present an optimization problem in which the
feasible set is described by a Nash equilibrium.

Cournot equilibrium

In this model, there are n firms producing a certain good. Each firm has to decide
how many units of the product it will produce. The decision of firm i is denoted
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by yi. The price of the product is P (T ), where T denotes the total amount of
the good in the market, i.e., T =

∑n
i=1 yi. The cost of producing yi units for the

firm i is described by fi(yi). Its profit is then given by ui(y) = yip(T ) − fi(yi).
Of course, here we have Yi ⊂ R+.

Suppose the firm 1 places its production in the market, say y1, first. Knowing
this value, the other firms will plan their productions in order to maximize their
profits. The first firm must decide the value of y1 that maximizes its profit under
these circumstances. Then it will solve the bilevel problem:

min
x,y

f1(x)− xp(x+
n∑

j=2

yj)

s.t. x ∈ Y1,
and for i = 2, . . . , n

yi solves min
z
fi(z)− zp(x+

i−1∑
j=1

yi + z +
n∑

j=i+1

yi)

s.t. z ∈ Yi,

(1.4.2)

Of course if fi(yi)− yip(x +
∑n

i=1 yi) ∈ C1 are convex functions of yi and Yi are
convex sets, i = 1, . . . , n, the system (1.4.1) characterizes the equilibrium points
as solutions of a variational inequality problem. Then we find the equivalent
formulation as a PV I :

min
x,y

f1(x)− xp(x+
n∑

j=2

yj)

s.t. x ∈ Y1,
yi ∈ Yi i = 2, . . . , n,

〈F (x, y2, . . . , yn), z − (y2, . . . , yn)T 〉 ≥ 0, ∀z ∈ Y2 × Y3 × . . .× Yn,

where F : Rn → Rn−1 is given by Fi(x, y2, . . . , yn) = f ′i+1(yi+1)−p(T )−yi+1p
′(T ),

i = 1, . . . , n− 1 and T = x+
n∑

i=2

yi.

Generalized Nash equilibrium problem

In this example we consider a game of n players, where the payoff of player i is
described by the function ui, i = 1, 2, . . . , n and the strategies of player i depend
on the decisions of the other players. The set of feasible strategies for player i is

Yi(y−i) =

{
yi ∈ Rmi

∣∣∣∣ gj
i (yi, y−i) ≥ 0, j = 1, . . . , qi,

gj
i (yi) ≥ 0, j = 1, . . . , li

}
if the player j chooses strategy yj for j = 1, . . . i − 1, i + 1, . . . n. Here
y−i = (y1, . . . , yi−1, yi+1, . . . , yn). Now the problem is to find y = (y1, . . . , yn)
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such that, for i = 1, 2, . . . , n,

yi solves max
z
ui(y1, . . . , yi−1, z, yi+1, . . . , yn)

s.t. z ∈ Yi(y−i).

If we assume that ui is concave in the variable yi and the sets Yi(y−i) are non-
empty and convex, the previous model is equivalent to the problem of finding
y:

yi ∈ Yi(y−i),
such that 〈−∇yi

ui(y), yi − yi〉 ≥ 0, ∀yi ∈ Yi(y−i), i = 1, . . . , n

which is equivalent with finding (y, x) such that:

y ∈ Y (x),
〈F (y), y − y〉 ≥ 0, ∀y ∈ Y (x),

x = y,
(1.4.3)

where F (y) =

 −∇y1u1(y)
...

−∇ynun(y)

 and Y (x) = Y (x−1)× Y (x−2)× . . .× Y (x−n).

If we write the constraint x = y as min ‖x−y‖2, we have the following formulation
of the generalized Nash equilibrium problem as a PV I :

min
x,y

‖x− y‖2

s.t. y ∈ Y (x),
〈F (y), z − y〉 ≥ 0, ∀z ∈ Y (x).

(1.4.4)

Of course y will be a generalized Nash equilibrium point if and only if (y, y) solves
the previous problem.

1.4.2 Applications from mathematical physics

One way of finding approximate solutions of control problems is by discretizing
the domain and solving an approximate nonlinear problem. In this part we
will present equilibrium problems appearing when solving control models by a
discretization approach, cf. [43]. Let us first fix some notations. We assume
that α is a function which is differentiable almost everywhere (a.e.). The set of
feasible functions is:

U =

{
α : [0, 1] → [c1, c2]

∣∣∣∣ |∂α∂x (x)| ≤ c3, a.e., x ∈ [0, 1]

}
.

For α ∈ U , the set Ωα is defined as {x ∈ R2 | x1 ∈ [0, 1], 0 < x2 < α(x1)}. Its
area will be J(α).
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Ω0 denotes a fixed domain, that is assumed to be included in (0, 1)× (0, c1). For
fixed α ∈ U , u describes the deformation, by a force f , of a membrane in Ωα. On
the boundary of Ωα, the membrane is not deformed, i.e,

u(x) = 0, x ∈ ∂Ωα. (1.4.5)

Packaging problem with rigid obstacle

In this problem, given χ, f : [0, 1] × [0, c2] → R, f, χ ∈ L2([0, 1] × [0, c2]), we
have to find α, α ∈ U , that minimizes the area J(α) of Ωα, under the conditions
that there is a membrane in Ωα, given by u, deformed by f , such that (1.4.5) is
satisfied. The membrane lies over the rigid object described by the function χ
and it has to be in contact with this object in the fixed set Ω0. The model then
is:

min
u,α

J(α)

s.t. −∆u(x) ≥ f(x), a.e. in Ωα,
u(x) ≥ χ(x), x ∈ Ωα,

(∆u(x) + f(x))(u(x)− χ(x)) = 0, a.e. in Ωα,
u(x) = 0, ∀x ∈ ∂Ωα,

Ω0 ⊂ Z(α),
α ∈ U,

where u denotes the deformation of the membrane, ∆u the Laplacian of u and
Z(α) = {x ∈ Ωα | u(x) = χ(x)}.

In order to solve this problem, the condition Ω0 ⊂ Z(α) is eliminated via a
penalty approach and the objective function becomes: J(α)+r

∫
Ω0

(u(ξ)−χ(ξ))dξ.

Let Dα̂(h) be a suitable discretization of the domain Ωα with mesh size h = 1
n
,

see [43] for details. If the involved functions are approximated by piecewise-linear
interpolating functions, we obtain the following nonlinear approximate problem

min
α̂,v̂

J(α̂, h) + rh2
∑

i∈D0(h)

v̂i

s.t. A(α̂, h)v̂ + A(α̂, h)χ̂(α̂, h)− f̂(α̂, h) ≥ 0,
v̂ ≥ 0,

〈A(α̂, h)v̂ + A(α̂, h)χ̂(α̂, h)− f̂(α̂, h), v̂〉 = 0,

α̂ ∈ Û .

(1.4.6)

Here α̂i = α( i
n
), i = 0, 1, . . . , n, D0(h) = Dα̂(h) ∩ Ω0, and for xj ∈ Dα̂(h),

j = 1, . . . , |Dα̂(h)|, we have the following approximations: ûj = u(xj),

f̂(α̂, h)j = f(xj), χ̂(α̂, h)j = χ(xj). The vector v̂ is equal to û − χ̂(α̂, h) and
A(α̂, h) denotes the matrix such that [A(α̂, h)û]j ≈ ∆u(xj), where u(x) is the
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piecewise-linear function interpolating u in Dα̂(h). Finally

Û =

{
α̂ ∈ Rn+1

∣∣∣∣ there is a piecewise linear function α ∈ U
such that α̂i = α( i

n
), i = 0, 1, . . . , n

}
.

It can be seen that Û can be written as the set of vectors α̂ ∈ Rn+1 such that
α̂i ∈ [c1, c2], i = 0, . . . , n, and

∣∣∣ α̂i−α̂i−1

n

∣∣∣ ≤ c3, i = 1, 2, . . . , n.

The problem (1.4.6) is a MPCC problem. Note that it has also the structure
of the PV I problem (1.1.8), since the set of feasible solutions can be written as:

α̂ ∈ Û , v̂ ≥ 0, 〈A(α̂)v̂ + A(α̂)χ̂(α̂)− f̂(α̂), z − v̂〉 ≥ 0, ∀z ∈ Rm
+ .

Packaging problem with compliant obstacle

In this example the object can be deformed by the membrane. The surface of the
object is described by G(u, x) = k(∆u(x) + f(x)) + χ(x), where χ is the original
shape of the object and 1/k is the compliance of the obstacle material, see [43]
for details. The model is

min
u,α

J(α)

s.t. −∆u(x) ≥ f(x), a.e. in Ωα,
u(x) ≥ G(u, x), a.e. in Ωα,

(∆u(x) + f(x))(u(x)−G(u, x)) = 0, a.e. in Ωα,
u(x) = 0, x ∈ ∂Ωα,

Ω0 ⊂ Z(α),
α ∈ U.

Again the condition Ω0 ⊂ Z(α) is penalized and the objective function becomes
J(α)+r

∫
Ω0

(u(ξ)−G(u, ξ))dξ. In this case, after applying the same discretization
step of mesh size h, the resulting problem will be:

min
α̂,û

J(α̂, h) + rh2
∑

i∈D0(h)

(û− Ĝ(α̂, h, û))i

s.t. A(α̂, h)û− f̂(α̂, h) ≥ 0,

û− Ĝ(α̂, h, û) ≥ 0,

〈A(α̂, h)û− f̂(α̂, h), û− Ĝ(α̂, h, û)〉 = 0,

where Ĝ(α̂, h, û) = k(f̂(α̂, h)−A(α̂, h)û)+ χ̂(α̂, h). Here we have given a MPCC
problem, which cannot be seen as a PV I problem.

15



16



Chapter 2

Theoretical background

The aim of the present chapter is to introduce some notation and concepts in
optimization and to sketch the deep genericity results of finite programming,
see e.g. [29]. They form the basis of the structural and genericity analysis for
equilibrium constrained programs presented later on.

2.1 Notations and basic results

As usual Rn denotes the n-dimensional Euclidean space. We often use the nota-
tion

Rn
+ = {x ∈ Rn | xi ≥ 0, i = 1, 2, . . . , n}

and
Rn

++ = {x ∈ Rn | xi > 0, i = 1, 2, . . . , n}.

Given I ⊂ {1, 2, . . . , n}, for a vector x ∈ Rn, xI denotes the |I|-dimensional vector
with components xi, i ∈ I. We define x−I = xIc , with Ic = {1, 2, . . . , n} \ I. If
I = {i}, obviously xI = xi and we often write x−i instead of x−I . For a matrix
A ∈ Rm×n, Ai denotes its ith-column and AI is the m× |I|-matrix with columns
Ai, i ∈ I. As usual, the matrix In represents the identity n × n-matrix. If n is
known, we simply write I.
For denoting a positive (semi)-definite matrix A ∈ Rn×n, we write A � 0(� 0).
We give two classical results from matrix theory used later on.

Lemma 2.1.1 (Farkas Lemma) If M = {x ∈ Rn | Ax ≤ 0}, A ∈ Rm×n, then
cTx ≤ 0, ∀x ∈M , if and only if c = ATy, for some y ≥ 0, y ∈ Rm.

Let B′ be a linear subspace of Rn, and V a matrix whose columns form a basis
of B′. We will denote by A|B′ the matrix V TAV .

Proposition 2.1.1 Let A be a symmetric matrix and B a n×p matrix, n ≥ p. If
B′ =

{
x | BTx = 0

}
, then the number of positive (negative, zero, respectively)
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eigenvalues of

(
A B
BT 0

)
is equal to the number of positive (negative, zero,

respectively) eigenvalues of A|B′ plus rank(B) (plus rank(B), plus (p−rank(B)),
respectively).

We further introduce ‖x‖p =

(
n∑

i=1

| xp
i |
) 1

p

. ‖x‖ will always be the Euclidean

norm ‖x‖2. The distance of a point x̂ ∈ Rn to a set M ⊂ Rn is defined by
d(x̂,M) = inf{‖x− x̂‖ | x ∈M}.
We also use the notation Bn

ε (x) = {x ∈ Rn | ‖x−x‖ < ε} and denote the closure
of Bn

ε (x) by B
n

ε (x).
For f : Rn → R, ∇f represents the gradient of f taken as a column vector.
Finally we consider [Ck]mn as the space of k−times continuously differentiable
functions with domain Rn and image in Rm. [Ck

S]mn is the space [Ck]mn endowed
with the strong topology, see Section 2.3.

2.2 Finite programming problems

In nonlinear programming a real valued function is minimized on the feasible set
M ⊂ Rn described by finitely many equalities and inequalities. In most cases
the involved functions are supposed to be Ck-functions. In this thesis a finite
programming problem P is of the form

P : min f(x)
s.t. x ∈M (2.2.1)

M =

{
x ∈ Rn

∣∣∣∣ hi(x) = 0, i = 1, . . . , q0,
gj(x) ≥ 0, j = 1, . . . , q

}
(2.2.2)

with given functions f, hi, gj ∈ [Ck]1n, i = 1, . . . , q0, j = 1, . . . , q, k ≥ 2. We often
use the abbreviation h = (h1, . . . , hq0), g = (g1, . . . , gq).

We want to find a (local) minimizer x ∈ M . Assuming that the feasible set
M is nonempty and compact, a minimizer always exists.

Definition 2.2.1 Given f : Rn → R, M ⊂ Rn, the point x ∈ M is a local
minimizer of f on M , if there is a neighborhood V (x) of x such that:

f(x) ≥ f(x), ∀x ∈ V (x) ∩M.

It is called a global minimizer if this inequality holds ∀x ∈M .
We say that x is a local minimizer of order ω, ω > 0, if there is a neighborhood

V (x) of x, and a constant κ > 0, such that:

f(x)− f(x) ≥ κ‖x− x‖ω, ∀x ∈ V (x) ∩M.
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We introduce some more definitions and notations.

Definition 2.2.2 For x ∈ M the set J0(x) of active indices of x, is denoted as
J0(x) = {j | gj(x) = 0}. The condition LICQ holds at x if the set of vectors

{∇hi(x), i = 1, . . . , q0, ∇gj(x), j ∈ J0(x)}

is linearly independent. The constraint qualification MFCQ is satisfied at x if

- ∇hi(x), i = 1, . . . , q0, are linearly independent and

- there is a vector ξ ∈ Rn such that:

ξT∇hi(x) = 0, i = 1, . . . , q0,
ξT∇gj(x) > 0, j ∈ J0(x).

As usual the Lagrangean function of the finite problem P near x is defined by

L(x, λ, µ) = f(x)−
q0∑

i=1

λihi(x)−
∑

j∈J0(x)

µjgj(x),

where the numbers λi, i = 1, . . . , q0, µj, j ∈ J0(x), are called Lagrange multipli-
ers.

The following KKT optimality condition is standard, see e.g. Luenberger [41]
or Bazara, Sherali and Shetty [4].

Theorem 2.2.1 (First order necessary conditions, cf. [41], [4]) Let x ∈M
be a local minimizer of f on M such that MFCQ holds at x. Then there exists λi,
i = 1, . . . , q0, µj, j ∈ J0(x), such that

∇f(x)−
q0∑

i=1

λi∇hi(x)−
∑

j∈J0(x)

µj∇gj(x) = 0, (2.2.3)

µj ≥ 0. (2.2.4)

If LICQ holds at x the multipliers λi, i = 1, . . . , q0, µj, j ∈ J0(x), satisfying
(2.2.3), are uniquely determined.

Remark 2.2.1 If x is a local minimizer and MFCQ fails, then the so-called
Fritz John (FJ) condition is fulfilled, i.e., there exists (λ0, λ, µ) 6= 0, λ0, µj ≥ 0,
j ∈ J0(x) such that

λ0∇f(x)−
q0∑

i=1

λi∇hi(x)−
∑

j∈J0(x)

µj∇gj(x) = 0.

The points x satisfying these conditions are called Fritz John points.
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Definition 2.2.3 The point x ∈M is called a critical point if LICQ is satisfied
at x and if there are multipliers λi, i = 1, . . . , q0, µj, j ∈ J0(x), such that
(x, λ, µ) satisfies the system (2.2.3).
If for some (λ, µ), the point x ∈M solves system (2.2.3) and for these multipliers
also (2.2.4) holds, then we call x a stationary point.
A point x is a generalized critical point (g.c. point), if the set of vectors

{∇f(x), ∇hi(x), i = 1, . . . , q0, ∇gj(x), j ∈ J0(x)} (2.2.5)

is linearly dependent. The set of all generalized critical points of P is denoted by
Σgc.

Of course at a stationary point where LICQ fails to hold, the multipliers may not
be unique. A necessary and sufficient condition for uniqueness is the so-called
strong-MFCQ, obtained as a consequence of the Lemma of Farkas, see Lemma
2.1.1.

Definition 2.2.4 If x is a stationary point with multipliers (λ, µ), µ ≥ 0, then
the strong-MFCQ condition is said to hold if:

- The vectors (∇h1, . . . ,∇hq0 ,∇gJ0(x)∩J+(µ))(x) are linearly independent, where
J+(µ) = {j | µj > 0} and

- there is some ξ ∈ Rn such that

[∇hi(x)]
T ξ = 0, i = 1, . . . , q0,

[∇gj(x)]
T ξ = 0, j ∈ J0(x) ∩ J+(µ),

[∇gj(x)]
T ξ > 0, j ∈ J0(x) \ J+(µ).

Let us assume that x ∈M satisfies LICQ. We define the tangent space :

TxM =

{
ξ ∈ Rn

∣∣∣∣ [∇hi(x)]
T ξ = 0, i = 1, . . . , q0,

[∇gj(x)]
T ξ = 0, j ∈ J0(x).

}
and denote by A|TxM the matrix V TAV where the columns of V form a basis of
the space TxM .

Definition 2.2.5 A point x ∈M is a non-degenerate critical point of P if it is
a critical point, with unique multipliers (λ, µ), satisfying:

(i) µj 6= 0, j ∈ J0(x).

(ii) ∇2
xL(x, λ, µ)|TxM is non-singular.

A problem P is called regular if at all its feasible points the condition LICQ holds
and if all its critical points are non-degenerate.
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To formulate genericity results in finite programming, we will identify the set of
problems P with the function space Pq0+q := {(f, h, g)} = [Ck]1+q0+q

n . The follow-
ing theorem contains the main genericity result in finite nonlinear programming,
see [22].

Theorem 2.2.2 (Genericity theorem, cf. [22]) Let F ⊂ Pq0+q denote the
set of functions (f, h, g) ∈ [C2]1+q0+q

n such that for the associated optimization
problem (2.2.1):

(i) LICQ holds at all its feasible points.

(ii) All its critical points are non-degenerate.

Then the set F is a dense and open subset of [C2]1+q0+q
n with respect to the strong

topology (see Definition 2.3.1).

2.3 Preliminaries from topology

In this section we will present some definitions on differential manifolds and
topology for the space of smooth functions. For a more detailed discussion on
the topic we refer to Hirsch [23] and [29].

Definition 2.3.1 For finite k, the strong Whitney topology on [Ck]1n is obtained
by considering the following local neighborhood system of the zero function:

V k
ε(x) =

{
f(x)

∣∣∣∣ ∣∣∣∣ ∂rf

∂xi1 . . . .∂xir

(x)

∣∣∣∣ < ε(x), ∀x ∈ Rn, r ≤ k

}
where ε is a continuous functions ε : Rn → R++. We will call this topology Ck

S

topology and we denote the space [Ck]1n endowed with this topology by [Ck
S]1n.

The C∞
S topology in [C∞]1n is the result of taking, as neighborhood system, the

union of all sets V k
ε(x) for all k ∈ N ∪ {0}.

In the case of the set [Ck
S]mn , [C∞

S ]mn , the strong topology is obtained by the product
topology.

As an important fact, it holds that the topological spaces [Ck
S]mn , [C∞

S ]mn are Baire
spaces, see [29].

Definition 2.3.2 A set B ⊂ [Ck
S]mn is generic in [Ck

S]mn if B = ∩∞i=1Bi, with Bi

open and dense sets in [Ck
S]mn .

We also say that a property holds generically in [Ck
S]mn if it holds for a generic

subset B in [Ck
S]mn .

Let us now present some definitions on differential manifolds in Rn.
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Definition 2.3.3 M ⊂ Rn is an r-dimensional Ck-manifold if and only if there
are an open cover Ui, i ∈ Λ, M ⊂

⋃
i∈Λ Ui and functions φi such that φi : Ui → Vi,

Vi ⊂ Rr and φi(φ
−1
j )|Vi

⋂
Vj

is a Ck-function, k ≥ 1.

We will mostly use manifolds of Rn+r that can be written as

M = Φ−1(0),

where Φ : Rn+r → Rr, Φ ∈ C1 and ∇Φ(x) has full rank r for all x such that
Φ(x) = 0. In this case, M is an n-dimensional C1 manifold in Rn+r and its
co-dimension is r. Related with this fact there is the concept of regular values of
a function.

Definition 2.3.4 Let the function φ : Rn → Rr be in [C1]rn. The value y ∈ Rr

is said to be a regular value of φ if the matrix ∇φ(x) has rank r for all x ∈ Rn

such that φ(x) = y.

The proof of the genericity results, later on, will mostly be based on the
following important result, see [21].

Lemma 2.3.1 (Parameterized Sard Lemma, cf. [21]) Let φ(x, z) be in
[Ck]rn+p, with k > max {0, n− r} and x ∈ Rn, z ∈ Rp. Let us assume that 0
is a regular value of φ. Then for almost every z ∈ Rp, 0 is a regular value of the
function φ̂z : Rn → Rr, φ̂z(x) = φ(x, z).

We also give a main result in transversality theory.

Definition 2.3.5 Let M1 and M2 be C1-manifolds in Rn. We say that M1, M2

intersect transversally, denoted by M1 t M2, if for every x ∈M1 ∩M2, it follows
TxM1 + TxM2 = Rn.

Definition 2.3.6 For F ∈ [Ck]mn , we define the k-jet mapping or k-jet extension
of F by

jkF (x) = (x, F (x),∇xF (x),∇2
xF (x), . . . ,∇k

xF (x)),

where the elements of ∇rF (x), r ≥ 2 appear modulus symmetries.
The smallest Euclidean space containing the image of jkF (x) is called jet space
and will be denoted as J(n,m, k). WF =

{
jkF (x)| x ∈ Rn

}
is the jet manifold.

For a manifold V in J(n,m, k), the set {F ∈ [C∞]mn | WF t V } is written as
tk V .

Theorem 2.3.1 (Jet Transversality theorem, cf. [23]) Let k ∈ N be fixed.
Then for all i ∈ N, the set tk V is dense in [C∞]mn with respect to the Ci

S topology.
If V is a closed set of J(n,m, k) then the set tk V ⊂ [C∞]mn is open with respect
to the Ci

S topology for i ≥ k + 1.
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2.4 One-parametric optimization

The present section deals with one-parametric finite problems of the form

P (t) : min
x
f(x, t)

s.t. x ∈M(t)
(2.4.1)

M(t) =

{
x ∈ Rn

∣∣∣∣ hi(x, t) = 0, i = 1, . . . , q0,
gj(x, t) ≥ 0, j = 1, . . . , q

}
(2.4.2)

where t ∈ R is the parameter. For more details the reader is referred to Bank,
Guddat, Klatte, Kummer and Tammer [1], [21] and [22]. The concepts in non-
parametric optimization can be easily extended to the parametric case.

Definition 2.4.1 (x, t) is called a local minimizer of P (t), also written as
(x, t) ∈ Σloc(P (t)), if x is a local minimizer of f(x, t) in M(t).
The point (x, t) is a generalized critical point of P (t), if x ∈M(t) and the vectors{
∇xf(x, t), ∇xhi(x, t), i = 1, . . . , q0, ∇xgj(x, t), j ∈ J0(x, t)

}
are linearly depen-

dent, where J0(x, t) =
{
j | gj(x, t) = 0

}
. The set of g.c. points of P (t) is denoted

by Σgc(P (t)).
If the problem P (t) is clearly identified, the sets of local minimizers and g.c.
points are simply abbreviated as Σloc and Σgc, respectively.

The definitions of LICQ, critical points, Lagrange function L(x, t, λ, µ) near (x, t),
Lagrange multipliers, etc., given in Section 2.2, are extended analogously.

For a vector y ∈ Rm we introduce the notation J 6=(y) = {i | yi 6= 0}.
Now we will present 5 types of g.c. points for one-parametric problems. They
were defined and studied in [27], [28], see also [21] and [22].

In the following, Σi
gc, i = 1, . . . , 5, denotes the set of g.c. points of type i.

At a critical point (x, t), the vector (λ, µ) represents the uniquely determined
multipliers such that ∇xL(x, t, λ, µ) = 0. In the g.c. points where LICQ fails,
the multipliers (λ, µ) are such that

q0∑
i=1

λi∇xhi(x, t)−
∑

j∈J0(x,t)

µj∇xgj(x, t) = 0.

W.l.o.g. we assume that J0(x, t) = {1, . . . , p} , p ≤ q.

Definition 2.4.2 For (x, t) ∈ Σgc, we write (x, t) ∈ Σ1
gc, and say that (x, t) is a

generalized critical point of type 1, if:

(1a) LICQ holds at (x, t).

(1b) J0(x, t) = J 6=(µ), i.e., all multipliers associated to active inequality con-
straints are non-zero.
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(1c) ∇2
xL(x, t, λ, µ)|TxM(t) is non-singular.

The previous definition means that (x, t) is a non-degenerate critical point of
P (t). In view of Proposition 2.1.1, this can equivalently be expressed by the
conditions

H := ∇2
(x,λ,µ)L(x, t, λ, µ) is non-singular and J0(x, t) = J 6=(µ).

By using this result, we can apply the Implicit Function Theorem to the non-linear
system that describes the critical point condition and show that, locally around
(x, t), the set of generalized critical points is a curve (x(t), t) of non-degenerate
critical points.

To define generalized critical points of type 2, we consider the problems

P p(t) : min
x
f(x, t)

s.t. x ∈Mp(t),

where

Mp(t) =

{
x ∈ Rn

∣∣∣∣ hi(x, t) = 0, i = 1, . . . , q0,
gj(x, t) = 0, j = 1, . . . , p

}
and

P p−1(t) : min
x
f(x, t)

s.t. x ∈Mp−1(t),

with

Mp−1(t) =

{
x ∈ Rn

∣∣∣∣ hi(x, t) = 0, i = 1, . . . , q0,
gj(x, t) = 0, j = 1, . . . , p− 1.

}
Definition 2.4.3 (x, t) ∈ Σgc is a generalized critical point of type 2,
(x, t) ∈

∑2
gc, if:

(2a) LICQ holds at (x, t).

(2b) J0(x, t)/J6=(µ) consists of one index, w.l.o.g. J0(x, t)/J6=(µ) = {p}.

(2c) x is a non-degenerate critical point of P p(t) and P p−1(t).

(2d) If (xp−1(t), t), denotes the curve of critical points of P p−1(t) near t then
Dtgp(x

p−1(t), t)|t=t 6= 0.

At a g.c. point of type 2, a bifurcation takes place in the set Σgc. There are two
branches of critical points, one associated to problem P p(t) for t ∈ [t−ε, t+ε] and
the other corresponds to the feasible branch of critical points of problem P p−1(t),
either for t ∈ [t− ε, t] or t ∈ [t, t+ ε].
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Definition 2.4.4 We write (x, t) ∈ Σ3
gc and say (x, t) is a g.c. point of type 3 if:

(3a) (x, t) is a critical point of P (t), with unique multipliers (λ, µ).

(3b) J0(x, t) = J 6=(µ).

(3c) (x, t, λ, µ) is a non-degenerate critical point of

min
{
t | ∇(x,λ,µ)L(x, t, λ, µ) = 0

}
.

In such a point the matrix ∇2
xL|TxM(t) has exactly one eigenvalue equal to 0.

Geometrically, condition (3c) implies that (x, t) is a quadratic turning point in
Σgc.

In the next two types of g.c. points the condition LICQ does not hold. For
simplicity we introduce the notation

U(x, t) = (∇xh1(x, t), . . . ,∇xhq0(x, t),∇xg1(x, t), . . . ,∇xgp(x, t)) .

Definition 2.4.5 For a g.c. point (x, t) of P (t), we say (x, t) ∈ Σ4
gc, i.e., (x, t)

is a point of type 4 if:

(4a) 1 ≤ q0 + p ≤ n and rank(U(x, t)) = q0 + p− 1.

(4b) For all solutions (λ, µ) ∈ Rq0+p of U(x, t)

(
λ
µ

)
= 0, it follows µj 6= 0,

j = 1, . . . , p.

(4c) Let us consider the functionH(x, t, λ, µ, λ0) = ∇(x,λ,µ)L̂(x, t, λ, µ, λ0), where

L̂(x, t, λ, µ, λ0) = λ0f(x, t)−
∑q0

i=1 λihi(x, t)−
∑p

j=1 µjgj(x, t) and let (λ, µ)

be the unique solution of U(x, t)

(
λ
µ

)
= 0 with µp = 1. The point

(x, t, λ, µ1, . . . µp−1, 0) is a non-degenerate critical point of

G : min
x,t,λ,µ1,...,µp−1,λ0

t

s.t. H(x, t, λ, µ1, . . . , µp−1, 1, λ0) = 0.

As in the case of a g.c. point of type 3, the points of type 4 are turning points of
Σgc.

Definition 2.4.6 A g.c. point (x, t) is of type 5, i.e. (x, t) ∈ Σ5
gc if:

(5a) q0 + p = n+1 and rank

(
U(x, t)

(∇th1, . . . ,∇thq0 ,∇tg1, . . . ,∇tgp) (x, t)

)
= n+1.
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(5b) For any solution (λ, µ) ∈ Rq0 ×Rp of U(x, t)

(
λ
µ

)
= 0 it holds µj 6= 0 for

j = 1, . . . , p.

(5c) For any (λ, µ) ∈ Rq0+p such that ∇xL(x, t, λ, µ) = 0, it follows
|J0(x, t)/J6=(µ)| ≤ 1.

At a point of type 5 a bifurcation occurs in the following way: for l = 1, 2, . . . , p
we define

P l(t) : min f(x, t)
s.t. hi(x, t) = 0, i = 1, . . . , q0,

gj(x, t) = 0, j = 1, 2, . . . , l − 1, l + 1, . . . , p.
Then there is some ε, ε > 0 such that exactly one of the sets

Σgc(P
l(t)) ∩ {(x, t) ∈ Rn × R | x ∈M(t), t ∈ (t, t+ ε]}

or

Σgc(P
l(t)) ∩ {(x, t) ∈ Rn × R | x ∈M(t), t ∈ [t− ε, t)}

is non-empty (and the other empty) around (x, t). Moreover, locally,
Σgc(P (t)) =

⋃p
l=1

{
Σgc(P

l(t)) ∩ {(x, t) ∈ Rn × R | x ∈M(t)}
}
.

Definition 2.4.7 We will say that a one-parametric problem, given by
(f, h, g) ∈ [C3

S]1+q0+q
n+1 is JJT-regular on T ⊂ R or that (f, h, g) is in the class

F|T if all its generalized critical points (x, t) with t ∈ T , are of type 1, 2, 3, 4 or
5.

We end this chapter with the main genericity results for parametric optimization
problems:

Theorem 2.4.1 (Genericity result, cf [21])
(a) Fix any parametric problem P (t) (see (2.4.1)) and T = [0, 1] or T = R.
Consider the perturbed problems

P (A, b, c, d) : min f(x, t) + xTAx+ bTx
s.t. hi(x, t) + cTi x+ di = 0, i = 1, . . . , q0,

gj(x, t) + cTj+q0
x+ dj+q0 ≥ 0, j = 1, . . . , q

where A is a symmetric n × n-matrix, and (b, c1, . . . cq0+q, d) ∈ Rn+n(q0+q)+q0+q.
The set of perturbations (A, b, c, d) such that P (A, b, c, d) is not JJT-regular on
T has Lebesgue measure zero.
(b) The sets F|[0,1] and F|R are open and dense with respect to the strong topology

in [C3
S]1+q0+q

n+1 .
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Remark 2.4.1 The previous theorem means that the JJT-regularity is not a
strong condition. It is stable under small perturbations and, for a problem defined
by the functions P (t) = (f, h1, . . . hq0 , g1, . . . , gq), there is a sequence of functions
corresponding to JJT-regular problems Pk(t), k ∈ N, converging to P (t) with re-
spect to the strong topology. Moreover we can find arbitrarily small quadratic and
linear perturbations of the involved functions leading to regular problems.
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Chapter 3

Variational Inequality Problems

3.1 Introduction

This chapter is devoted to Variational Inequalities (VI), i.e., we consider the
feasibility problem

V I : find y ∈ Y ⊂ Rm

such that Φ(y)T (z − y) ≥ 0, ∀z ∈ Y,

and the one-parametric version

V I(t) : for t ∈ [0, 1], find y ∈ Y (t) ⊂ Rm

such that Φ(y, t)T (z − y) ≥ 0, ∀z ∈ Y (t).

These inequalities are particular cases of equilibrium constraints. A point solving
V I, also called a feasible point of V I, can be obtained by means of a fixed point
algorithm (Patrickson [45]), with the help of merit functions (Solodov [56]) or by
applying regularization techniques (Ravindran and Gowda [48]).

Let us shortly discuss the problem of the existence of feasible solutions of
V I. In general these problems may have no feasible solution. However convexity
conditions lead to the following result.

Theorem 3.1.1 (Existence conditions, cf. [45]) If Y 6= ∅ is convex and
Φ(y) is continuous on Y , then each of the following conditions is sufficient for
the existence of a feasible solution of V I:

1. Y is compact.

2. Φ is coercive, i.e., ∃y0 ∈ Y , such that lim
‖y‖→∞;y∈Y

Φ(y)T (y−y0)
‖y‖ = +∞ holds for

any sequence of points y ∈ Y with ‖y‖ → ∞.

3. Φ is strongly monotone, i.e., ∃κ, κ > 0, such that for all y1, y2 ∈ Y we
have (Φ(y1)− Φ(y2))

T (y1 − y2) ≥ κ‖y1 − y2‖2.
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Proof. For a proof, which is based on the fixed point theory, we refer to [45]. See
also [7].

2

The chapter is organized as follows. We firstly apply the KKT approach to
V I. Then in Section 3.3 we will outline the genericity results of [19] for the one
parametric problem V I(t). In the last section we analyze embedding procedures
for solving V I and obtain genericity results for these approaches.

3.2 The KKT approach for variational inequal-

ities

Let us consider the variational inequality problem

V I : find y ∈ Y
such that Φ(y)T (z − y) ≥ 0, ∀z ∈ Y, (3.2.1)

where the set Y is defined by:

Y =

{
y ∈ Rm

∣∣∣∣ hi(y) = 0, i = 1, . . . , q0,
gj(y) ≥ 0, j = 1, . . . , q.

}
(3.2.2)

We denote this problem more explicitly by V I(Φ, Y ) or by V I(Φ, h, g), where
h = (h1, . . . , hq0) and g = (g1, . . . , gq).

Throughout the chapter we assume Y 6= ∅ and (Φ, h, g) ∈ [C3]m+q0+q
m . The

points y satisfying condition (3.2.1) will be called feasible solutions of V I.
As it was already discussed, see Section 1.2, in view of the relation

Φ(y)T (y − y) = 0, a point y ∈ Y is feasible for V I if and only if it solves
the optimization problem

Q(y) : min
z

Φ(y)T (z − y)

s.t. z ∈ Y.
(3.2.3)

So a solution y of V I necessarily satisfies a Fritz John condition for the problem
(3.2.3). With the active index set J0(y) = {j | gj(y) = 0} , and the function

L(y, λ0, λ, µ) = λ0Φ(y)−
q0∑

i=1

λi∇hi(y)−
∑

j∈J0(y)

µj∇gj(y),

corresponding to the derivative with respect to z of the Lagrangean of prob-
lem Q(y), the necessary optimality conditions are summarized in the following
proposition.
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Theorem 3.2.1 (Necessary feasibility condition, cf. [19]) Let y be a fea-
sible solution of V I(Φ, h, g). Then, there are multipliers λ and λ0, µ ≥ 0 not all
zero such that L(y, λ0, λ, µ) = 0. Moreover the second order optimality condition
holds:

ξT

− q0∑
i=1

λi∇2
yhi(y)−

∑
j∈J0(y)

µj∇2
ygj(y)

 ξ ≥ 0 , ∀ξ ∈ TyY.

If LICQ or MFCQ holds at y, then the KKT condition is satisfied, i.e., we can
assume λ0 = 1 in L(y, λ0, λ, µ) = 0.

Recall that if the problem (3.2.3) is convex (i.e., the functions hi are linear
i = 1, . . . , q0 and −gj are convex, j = 1, . . . , q) then the KKT condition
L(y, 1, λ, µ) = 0, µ ≥ 0, is sufficient for y to be a solution of (3.2.3). In view of
Theorem 3.2.1, if in addition MFCQ holds, the KKT condition and the optimality
condition for Q(y) are equivalent.

Definition 3.2.1 For y ∈ Y we write y ∈ Σgc, i.e, y is a generalized critical
point for V I, if there exist λ0, λi, i = 1, . . . , q0, µj, j ∈ J0(y) not all zero such
that L(y, λ0, λ, µ) = 0.

We write y ∈ Σcrit if y ∈ Σgc and LICQ holds at y ∈ Y . In this case we consider
the unique multipliers (λ, µ) such that L(y, 1, λ, µ) = 0. The notation y ∈ Σstat

means that y ∈ Σcrit and µj ≥ 0.

Definition 3.2.2 The point y ∈ Σgc is said to be a non-degenerate critical point,
denoted as y ∈ Σ1

gc if:

V I-1a: LICQ holds at y.
So, there exist unique multipliers (λ, µ) such that L(y, 1, λ, µ) = 0.

V I-1b: µj 6= 0 for all j ∈ J0(y).

V I-1c: ∇yL(y, 1, λ, µ) |TyY is non-singular.

We say that V I(Φ, h, g) is regular if LICQ holds for all y ∈ Y and all solutions
of V I(Φ, h, g) satisfy V I-1a, V I-1b, V I-1c.

As in the case of nonlinear problems, it can be shown that, generically for
(Φ, h, g) ∈ [C2

s ]n+q0+q
n+1 , the problem V I(Φ, h, g) is regular.

Remark 3.2.1 Under the conditions of Definition 3.2.2, as in standard finite
optimization, the point y will be an isolated critical point.
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We emphasize that in contrast to standard optimization, at a solution y of V I
due to the term ∇yΦ(y), the second order matrix ∇yL|TyY does not need to be

symmetric. Moreover, the condition ∇yL|TyY � 0 is not a second order necessary
feasibility condition because at a solution y, negative or even complex eigenvalues
may appear as is shown in the following example.

Example 3.2.1 Consider V I(Φ,R3), see (3.2.1), with Φ(y) =

 −y1

y2 − y3

2y2 + y3

.

The point y = 0 is the solution of the problem. However

∇yL(0)|R3 =

−1 0 0
0 1 −1
0 2 1


has negative and non-real eigenvalues.

3.2.1 Relations between Stampaggia and Minty variational
inequalities

In this subsection, we consider the relations between two classical variational
inequalities, the Stampaggia V I, in (3.2.1)

V IS : find y ∈ Y
such that φS(y, z) := Φ(y)T (z − y) ≥ 0, ∀z ∈ Y, (3.2.4)

and the Minty V I

V IM : find y ∈ Y
such that φM(y, z) := Φ(z)T (z − y) ≥ 0, ∀z ∈ Y. (3.2.5)

For details the reader is refereed to Kassay [35]. Assume that Y is defined by
(3.2.2) and consider the associated problem

Q(y) : min
z
φ(y, z)

s.t. z ∈ Y.
Let us apply the KKT approach. For both functions φS and φM we obtain
∇zφS(y, z)|z=y = Φ(y) and ∇zφM(y, z)|z=y = Φ(y) +∇yΦ(y)(z − y)|z=y = Φ(y).
So the Stampaggia and the Minty variational inequalities lead to the same KKT
system:

Φ(y)−
q0∑

i=1

λi∇hi(y)−
q∑

j=1

µj∇gj(y) = 0,

hi(y) = 0, i = 1, . . . , q0,
gj(y) ≥ 0, j = 1, . . . , q,
µj ≥ 0, j = 1, . . . , q,

gj(y)µj = 0, j = 1, . . . , q.

(3.2.6)
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Let us discuss the relations between these two variational inequalities. Assume
that Y is convex and satisfies a constraint qualification. Since the function φS is
linear in z, (y, λ, µ) solves the KKT system (3.2.6) if and only if y is feasible for
the Stampaggia variational inequality. In general the function φM is not convex in
z. But in case it is, the fact that y solves the KKT system (3.2.6) with some (λ, µ)
is equivalent to have y solving both, the Stampaggia and the Minty variational
inequality.

It is easy to see that if Φ is monotone, i.e., if

Φ(z)T (z − y) ≥ Φ(y)T (z − y), ∀y, z ∈ Y,

then each solution of V IS is a solution of V IM and vice versa. More precisely the
following relations (partially proved in [35]) hold.

Lemma 3.2.1 Let the set Y be convex. Then:
(a) Any solution of V IM is a solution of V IS.
(b) Let y be a solution of V IS and assume that the (partial) monotonicity con-
dition:

Φ(z)T (z − y) ≥ Φ(y)T (z − y), ∀z ∈ Y, (3.2.7)

holds. Then y is a solution of V IM .
(c) Let y be a solution of V IM (and thus of V IS) and let the function
φM(y, z) = Φ(z)T (z − y) be convex in z. Then the condition (3.2.7) is satis-
fied.

Proof. (a) Let y be a solution of V IM , i.e.,

Φ(z)T (z − y) ≥ 0, ∀z ∈ Y.

Take any point v ∈ Y and consider z(α) = αy + (1 − α)v. As Y is convex, if
α ∈ (0, 1), it follows that z(α) ∈ Y and

Φ(αy+(1−α)v)T (αy+(1−α)v−y) = (1−α)Φ(αy+(1−α)v)T (v−y) ≥ 0, ∀v ∈ Y.

Dividing by 1− α and letting α→ 1− it follows that Φ(y)T (v − y) ≥ 0, ∀v ∈ Y .

(b) For a solution y of V IS under (3.2.7) we directly obtain:

Φ(z)T (z − y) ≥ Φ(y)T (z − y) ≥ 0, ∀z ∈ Y.

(c) If the function Φ(z)T (z− y) is convex in z, then for all α ∈ (0, 1) and z ∈ Y ,

Φ(αy + (1− α)z)T (αy + (1− α)z − y) ≤ αΦ(y)T (y − y) + (1− α)Φ(z)T (z − y).

So for all α ∈ (0, 1) we find

(1− α)Φ(αy + (1− α)z)T (z − y) ≤ (1− α)Φ(z)T (z − y).
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Dividing by (1− α) and letting α ↑ 1 yields the monotonicity property,

Φ(y)T (z − y) ≤ Φ(z)T (z − y), for all z ∈ Y.

2

The next example shows that the converse of Lemma 3.2.1(c) is not necessar-
ily true, i.e., the monotonicity condition (3.2.7) does not necessarily imply the
convexity of the function φM(y, z) w.r.t. z.

Example 3.2.2 Consider the Minty inequality with the function Φ(y) = sin y
and Y = [−π

2
, π

2
]. The unique solution y ∈ Y of:

sin (z) · (z − y) ≥ 0, ∀z ∈ Y,

is given by y = 0.
As Φ′(y) = cos(y) ≥ 0 on Y , the function Φ(y) is monotonically increasing

on the interval [−π
2
, π

2
]. So the monotonicity relation (sin(z)− sin(y))(z− y) ≥ 0

holds. However, the function φ(y, z)M = sin(z)(z − y) is not convex in z ∈ Y .
To see this, note that a C2-function φ is convex on Y if and only if φ′′(z) ≥ 0,
for z ∈ Y . Differentiating w.r.t. z yields

∇2
zφM(y, z) = 2 cos(z)− sin(z)(z − y),

and we see that the second derivative is negative for z = π
2
.

3.3 One-parametric variational inequalities

In this section we shortly describe the genericity results of [19] for one parametric
variational inequalities. So we consider the parametric V I

V I(t) : find y ∈ Y (t)
such that Φ(y, t)T (z − y) ≥ 0, ∀z ∈ Y (t),

(3.3.1)

depending on the variable t ∈ T ⊂ R , where the set Y (t) is defined by

Y (t) =

{
y ∈ Rm

∣∣∣∣ hi(y, t) = 0, i = 1, . . . , q0,
gj(y, t) ≥ 0, j = 1, . . . , q

}
(3.3.2)

and (Φ, h, g) ∈ [C3]m+q0+q
m+1 , with h = (h1, . . . , hq0) and g = (g1, . . . , gq). V I(t) is

also denoted as V I(t; Φ, Y (t)) or as V I(t; Φ, h, g).
We will assume that T is a compact connected set, w.l.o.g., T = [0, 1]. We say

that a point (y, t) ∈ Rm × R is feasible for V I(t) if y is feasible for the problem
V I(t). In the same way, we can extend the other definitions of Section 3.2 and
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speak about stationary points, non-degenerate critical points and generalized
critical points (y, t) ∈ Rm+1 of V I(t) (for details we refer to [19]).

The KKT approach for solving the parametric V I (cf. Sectioon 3.2) leads us
to a one-parametric KKT system:

L(y, t, 1, λ, µ) = 0,
hi(y, t) = 0, i = 1, . . . , q0,
gj(y, t) ≥ 0, j = 1, . . . , q,

µj ≥ 0, j = 1, . . . , q,
gj(y, t)µj = 0, j = 1, . . . , q.

(3.3.3)

where L(y, t, 1, λ, µ) = Φ(y, t)−
q0∑

i=1

λi∇yhi(y, t)−
q∑

j=1

µj∇ygj(y, t).

Near a non-degenerate critical point (y, t) of V I(t), also called g.c. point of type
1, there exists a unique curve (y(t), t) of non-degenerate critical points, with
(y(t), t) = (y, t).

We are interested in the types of degeneracies which generically may occur
in the set of generalized critical points Σgc of V I(t). Extending the singularities
appearing in one-parametric finite programming (see [27], [28]) 4 types of de-
generate generalized critical points (y, t) were defined for V I(t) in [19]. Roughly
speaking at the singular points the following takes place:

- G.C. points of type 2, V I-2: Condition V I-1b does not hold.

- G.C. points of type 3, V I-3: Condition V I-1c fails.

- G.C. points of type 4, V I-4: LICQ does not hold at (y, t) w.r.t. Y (t) and
q0 + |J0(y, t)| ≤ m.

- G.C. points of type 5, V I-5: LICQ does not hold at (y, t) w.r.t. Y (t) and
q0 + |J0(y, t)| = m+ 1.

Here we have only listed the condition which is violated in each kind of singularity.
In all cases, the defined types have to fulfill additional properties. For a complete
definition of the types and their properties we refer to [19].
For V I(t) we denote the set of generalized critical points (y, t) of type i by Σi

gc.
Let T be a subset of R. A V I problem where all its g.c. points (y, t), t ∈ T are
of type 1, 2, 3, 4 or 5, is called regular on T . In terms of the defining functions
(Φ(y, t), h(y, t), g(y, t)) the set of regular one-parametric variational inequalities
is:

FV I(t)|T =
{

(Φ, h, g) ∈ [C3
S]m+q0+q

m+1

∣∣∣ Σgc(V I(t; Φ, h, g))
⋂

[Rm × T ] ⊂ ∪5
i=1Σ

i
gc

}
.

The following result has been shown in [19].
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Theorem 3.3.1 (cf. [19]) Given (Φ(y, t), h(y, t), g(y, t)) ∈ [C3
S]m+q0+q

m+1 , for al-

most all (A, b, Ch, dh, Cg, dg) ∈ Rm2+m+q0m+q0+qm+q it holds that

(Φ(y, t) + Ay + b, h(y, t) + [Chy + dh]
T , g(y, t) + [Cgy + dg]

T ) ∈ FV I(t)|[0,1].

Furthermore, the set FV I(t)|[0,1] is open and dense with respect to the topology in
[C3

S]m+q0+q
m+1 .

In Figure 3.1 (see [19]) the local structure of Σstat and Σgc is sketched around the
5 types of g.c. points appearing in the generic case.

In particular at points of type 5 where MFCQ fails, there exists a neighbor-
hood U of y and δ > 0 such that for all ε ∈ (0, δ) either Y (t + ε) ∩ U = ∅ or
Y (t− ε) ∩ U = ∅
Under additional convexity assumptions the points of type 3 are excluded in the
set Σstat.

Proposition 3.3.1 Let hi(y, t) = cTi (t)y + di(t), i = 1, . . . , q0, and let, for any
t, −gj(y, t), j = 1, . . . , q, be convex in y. If Φy(y, t) � 0 for all (y, t), then for
the corresponding problem V I(t) it follows that Σstat ∩ Σ3

gc = ∅.

Proof . By assumption

∇yL = ∇y

Φ−
q0∑

i=1

λi∇yhi −
∑

j∈J0(y,t)

µj∇ygj

 � 0

at all (y, t, λ, µ) with µ ≥ 0. So, the matrix ∇yL|TyY (t) is regular and singular
points of type 3 are excluded.

2

Remark 3.3.1 In particular if for all t ∈ [0, 1] the set Y (t) is convex and Φ(y, t)
is strongly monotone for y ∈ Rm (i.e., there is some κ, κ > 0, such that
Φ(y1, t)

T (y1 − y2) − Φ(y2, t)
T (y1 − y2) ≥ κ‖y1 − y2‖2, ∀y1, y2 ∈ Rm) it is not

difficult to show that ∇yΦ(y, t) � 0, ∀(y, t). So, we have Σstat ∩ Σ3
gc = ∅.

3.4 Embeddings for variational inequalities

The idea of an embedding approach to solve a non-parametric optimization prob-
lem P , is to construct a one-parametric problem P (t), t ∈ [0, 1], with end problem
P (1) = P and an easy starting problem P (0). Then, by using continuation meth-
ods, we try to follow the solutions of P (t) from t = 0 to t = 1. We adapt this
approach to solve non-parametric variational inequalities.
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Figure 3.1: The behavior of Σstat around the singularities
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Let be given a non-parametric V I problem V I(Φ(y), h(y), g(y)) in (3.2.1) defined
by C3-functions (Φ, h, g) : Rm → Rm+q0+q. We try to construct one-parameter
depending functions (Φ̂, ĥ1, . . . , ĥq0 , ĝ1, . . . , ĝq) : Rm1 ×R → Rm1+q01+q1 such that

the corresponding parametric problem V I(t) = V I(t; Φ̂(y, t), ĥ(y, t), ĝ(y, t)) sat-
isfies:

- V I(0) has a trivial solution.

- For all t ∈ [0, 1], the problem V I(t) has a solution.

- V I(1) is equivalent to V I(Φ, h, g).

Under the assumption that all generalized critical points of V I(t) are of type
1, there exists a solution curve (y(t), t), t ∈ [0, 1], which can be followed by
continuation methods. However this assumption is not generically satisfied. So,
we will consider this approach under the weaker regularity assumption that the
functions (Φ̂, ĥ, ĝ), defining the parametric embedding V I(t), are contained in
the generic subset FV I(t)|(0,1) introduced in the previous section.

We will discuss two different approaches, the standard embedding and the
penalty embedding. For both methods we will prove genericity results similar to
the general results in Theorem 3.3.1.

3.4.1 Standard embedding

Consider the functions (Φ, h, g) and the associated non-parametric problem
V I(Φ, h, g), see (3.2.1). The standard embedding is defined by functions of the
form

ΨS(t; Φ, h, g) =


tΦ(y) + (1− t)(y − y0)

thi(y) + (1− t), i = 1, . . . , q0

−t
q0∑

i=1

hi(y) + (1− t)

tgj(y) + (1− t), j = 1, . . . , q


and leads to the parametric variational inequality problem

V IS(t; Φ, h, g) : for t ∈ [0, 1], find y ∈ YS(t)
such that (tΦ(y) + (1− t)(y − y0))

T (z − y) ≥ 0, ∀z ∈ YS(t),
(3.4.1)

where the sets YS(t) are given by, (recall h = (h1, . . . , hq0) and g = (g1, . . . , gq)):

YS(t) =

y ∈ Rm

∣∣∣∣∣∣∣∣
thi(y) + (1− t) ≥ 0, i = 1, . . . , q0,

−t
q0∑

i=1

hi(y) + (1− t) ≥ 0,

tgj(y) + (1− t) ≥ 0, j = 1, . . . , q.


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Clearly, for t = 0 the point y0 ∈ Rm is a feasible starting point. Note that YS(1)
coincides with the set of feasible solutions of V I(Φ, h, g) because the original
constraints hi(y) = 0 can be written equivalently as

hi(y) ≥ 0, i = 1, . . . , q0, and −
q0∑

i=1

hi(y) ≥ 0.

So V IS(1; Φ, h, g) coincides with V I(Φ, h, g). We refer to Schmidt [50] for a
study of similar embeddings for solving standard mathematical programs. For
our embedding we can prove the following genericity result.

Proposition 3.4.1 The set I =
{
(Φ, h, g) | ΨS(t; Φ, h, g) ∈ FV I(t)|t∈(0,1)

}
is a

generic set in [C3
S]m+q0+q

m .

Proof . Firstly we prove that for any fixed k > 2, the sets

Ik =
{

(Φ, h, g) | ΨS(t; Φ, h, g) ∈ FV I(t)|t∈[ 1
k
,1− 1

k
]

}
are open and dense in [C3

S]m+q0+q
m .

Ik is open in [C3
S]m+q0+q

m : Let (Φ, h, g) ∈ Ik. By Theorem 3.3.1, FV I(t)|[0,1] is open,
and it can be proven that FV I(t)|[a,b] is also open for all a, b, 0 < a < b < 1. So,

there is a strong neighborhood U ⊂ [C3
S]m+q0+1+q

m+1 of ΨS(t; Φ, h, g) (defined by
a continuous function ε(x, t) : Rm+1 → R++) such that U ⊂ FV I(t)|t∈[ 1

k
,1− 1

k
].

Clearly, (Φ, h1, . . . hq0 , h0, g1, . . . , gq)(y, t) ∈ [C3
S]m+q0+1+q

m+1 is in U if and only if for
all (y, t) ∈ Rm × [ 1

k
, 1− 1

k
]

‖Φ(y, t)−
[
tΦ(y) + (1− t)(y − y0)

]
‖ < ε(y, t),

‖hi(y, t)−
[
thi(y) + (1− t)

]
‖ < ε(y, t), i = 1, . . . , q0,

‖h0(y, t)−

[
−t

q0∑
i=1

hi(y) + (1− t)

]
‖ < ε(y, t),

‖gj(y, t)−
[
tgj(y) + (1− t)

]
‖ < ε(y, t), j = 1, . . . , q,

and analogous relations hold for the first and second order partial derivatives.
Now we consider an open neighborhood of (Φ, h, g) ∈ [C3]mm × [C3]q0

m × [C3]qm
defined by

ε̂(y) =


min

t∈[ 1
k
,1− 1

k
]

ε(y,t)
q0

if q0 6= 0,

min
t∈[ 1

k
,1− 1

k
]
ε(y, t) if q0 = 0.

As the minimum is taken over a compact set and ε(y, t) is a continuous and
positive function, also ε̂(y) will be a positive and continuous function of y. Let
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(Φ, h, g) be an element in the neighborhood of (Φ, h, g) defined by ε̂(y). We claim
that ΨS(t; Φ, h, g) ∈ U .
To show this, for q0 ≥ 1 we obtain, for t ∈ [ 1

k
, 1− 1

k
]:

‖tΦ(y) + (1− t)(y − y0)−
[
tΦ(y) + (1− t)(y − y0)

]
‖ = t‖Φ(y)− Φ(y)‖

< tε̂(y) ≤ ε(y,t)
q0

≤ ε(y, t)

and for q0 = 0,

‖tΦ(y) + (1− t)(y − y0)−
[
tΦ(y) + (1− t)(y − y0)

]
‖ < tε̂(y) ≤ ε(y, t).

Similarly, it is easy to see that ‖thi(y) + (1 − t) −
[
thi(y) + (1− t)

]
‖ < ε(y, t)

and ‖tgj(y) + (1 − t) −
[
tgj(y) + (1− t)

]
‖ < ε(y, t). The partial derivatives of

first and second order of (Φ, h, g) satisfy an analogous inequality.
For q0 = 0, the proof is completed. In the other cases we also have to consider
the bound (t ∈ ( 1

k
, 1− 1

k
))

‖ − t
q0∑

i=1

hi(y) + (1− t)−
[
−t

q0∑
i=1

hi(y) + (1− t)

]
‖ = t‖

q0∑
i=1

hi(y)−
q0∑

i=1

hi(y)‖

≤ t
q0∑

i=1

‖hi(y)− hi(y)‖

< q0ε̂(y) ≤ ε(y, t).

That means, we have found a strong neighborhood Û of (Φ, h, g) given by ε̂(y)
such that Û ⊂ Ik, hence, Ik is open.

Ik is dense in [C3
S]m+q0+q

m : To show this we will first fix the functions (Φ, h, g) and
prove that for almost all (A, b, Ch, dh, Cg, dg) it holds that (Φ+Ay+ b, h+[Chy+
dh]

T , g + [Cgy + dg]
T ) ∈ Ik.

We begin by considering the g.c. points (y, t) where LICQ fails, i.e., there exists
µ 6= 0 such that: ∑

j∈J0(y,t)

µj∇yĝj(y, t) = 0 (3.4.2)

where ĝj(y, t) = thj(y)+ (1− t) if j = 1, . . . , q0, ĝq0+1(y, t) = −t
q0∑

i=1

hi(y)+ (1− t)

and ĝj+q0+1(y, t) = tgj(y) + (1 − t) if j = 1, . . . , q. We will show that for almost
all (Ch, dh, Cg, dg) for the corresponding perturbed problem it holds:

(a) LICQ fails only in a discrete set of feasible points (y, t) with t ∈ [ 1
k
, 1− 1

k
]

(we will denote this set by Y0).

(b) For all (y, t) ∈ Y0 and (y, t, µ) solving (3.4.2), it holds that µj 6= 0 for all
j ∈ J0(y, t).
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(c) For all (y, t) ∈ Y0 and (y, t, µ) solving (3.4.2) and j∗ ∈ J0(y, t) the matrix(∑
j∈J0(y,t) µj∇(y,t)[∇yĝj(y, t)]

T ∇(y,t)ĝJ0(y,t)(y, t)

[∇yĝJ0(y,t)\{j∗}]
T (y, t) 0

)
is non-singular.

These conditions will guarantee the fulfillment of conditions (4a)-(4b), (5a)-(5b) in
Definition 2.4.5 and Definition 2.4.6. Note that the feasible set YS(t) has a special
structure because the same functions hi appear also in the (q0 + 1)th-constraint.
For y ∈ YS(t), 0 < t < 1, the first q0 + 1 inequality constraints cannot be active
simultaneously. Indeed if the first q0 constraints are active,

thi(y) + (1− t) = 0, i = 1, . . . , q0,

then

−t
q0∑

i=1

hi(y) + (1− t) = (q0 + 1)(1− t) > 0.

For i = 1, . . . , q0 + 1, we consider the sets Yi,S(t) which are obtained from YS(t)
by skipping the ith-inequality. Then, in particular, the following holds: for all
t ∈

[
1
k
, 1− 1

k

]
if y ∈ YS(t) then y ∈ Yi,S(t) for some i ∈ {1, . . . , q0 + 1}, and the

ith-inequality is strictly positive at y.
Fixing i ∈ {1, . . . , q0 + 1}, and following the ideas of the proof of Lemma 6.17
pp. 119, in [21], we have that for almost all perturbations (Ch, dh, Cg, dg), the
set Y0 ∩ {(y, t) | y ∈ YiS(t)} is a discrete set, see (a), and for its elements,
conditions (b)-(c) hold, i.e., for all (y, t), with y ∈ Y (t), t ∈

[
1
k
, 1− 1

k

]
and

J0(y, t) ⊂ {1, 2, . . . , i − 1, i + 1, q0 + 1 + q}, if (y, t, µ) solves (3.4.2), then
µj 6= 0, ∀j ∈ J0(y, t). Now if we consider all possible indices i = 1, . . . , q0 +1 and
intersect the resulting sets of perturbations, we find that, for almost all param-
eters (Ch, dh, Cg, dg), conditions (a)-(b)-(c) are fulfilled for YS(t), and this leads
to the desired result.

Now we fix the parameters (Ch, dh, Cg, dg), and thus the feasible set, such
that the resulting perturbed problem satisfies conditions (a)-(b)-(c). Following
the same lines of the proof of Theorem 2.4.1 (see Theorem 6.18 pp. 121 in [21])
we can prove that for almost all (A, b) for the associated perturbed problem
the feasible points where LICQ fails are g.c. points of type 4 or 5 and the
g.c. points where LICQ holds are of type 1, 2 or 3. The perturbation result
is now a consequence of the Fubini theorem applied to the set of perturbations
(Ch, dh, Cg, dg)× (A, b).

Based on this result and with the help of partitions of the unity, the density
of Ik now follows as usual, see [21]. As can easily be seen, the relation I = ∩∞k=3Ik
holds. So the set I is generic. 2

Remark 3.4.1 If instead of (tΦ(y) + (1 − t)(y − y0)) we choose the simpler
parametric function (tΦ(y) + (1 − t)c) with some c ∈ Rm, c 6= 0, then at t = 0
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no initial solution exists for YS(0) = Rm. Indeed the initial problem is to find a
point y ∈ Rm such that cT (z − y) ≥ 0, ∀z ∈ Rm, which is impossible.

Remark 3.4.2 Assume that V I(Φ, h, g) is a regular problem, see Definition 3.2.2,
and that for all critical points with associated multipliers (λ, µ) it holds that
λi 6= λj, ∀i 6= j. Let us consider a sequence (yk, tk) ∈ Σgc, (yk, tk) → (y, 1),
such that y is a feasible point of V I(Φ, h, g). By the regularity assumptions y is
a non-degenerate g.c. point of the original problem V I(Φ, h, g). Using this fact
under our assumptions, we can prove that (yk, tk) ∈ Σ1

gc for k � 1.

We shortly discuss the particularities of the standard embedding when applied
to some special instances of V I problems. The first case is

V I(Φ,Rm
+ ) : find y ∈ Rm

+

such that Φ(y)T (z − y) ≥ 0,∀z ∈ Rm
+ .

(3.4.3)

It is not difficult to see that it is equivalent with the Non-Linear Complementarity
Problem (NLCP),

NLCP : find y ∈ Rm

such that y ≥ 0,
Φ(y) ≥ 0,

Φ(y)Ty = 0.

(3.4.4)

The second case is the box constrained problem V I(Φ, [0, 1]m). It can also be
written as follows:

find y ∈ Rm

such that yi = 0 ⇒ Φi(y) ≥ 0,
yi = 1 ⇒ Φi(y) ≤ 0,
yi ∈ (0, 1) ⇒ Φi(y) = 0,
∀i = 1, 2, . . . ,m.

(3.4.5)

For numerical reasons we prefer to deal with compact feasible sets. So in the
case of the V I problem defined in (3.4.3), the feasible set Rm

+ is replaced by

Rm
+ ∩B

m√
p(0) for some p, p > 0 large enough, and we consider the problems,

find y ∈ Y
such that Φ(y)T (z − y) ≥ 0, ∀z ∈ Y,

where Y =
{
y ∈ Rm

+ | ‖y‖2 ≤ p
}

in case of NLCP
Y = [0, 1]m for box-constrained V I.

In both cases LICQ holds for Y and it is easy to find a point y0 ∈ Y . So, in
the embedding approach we can leave the set Y unchanged. This leads to the
embedding

V I(t) : for t ∈ [0, 1], find y ∈ Y
such that (tΦ(y) + (1− t)(y − y0))

T (z − y) ≥ 0, ∀z ∈ Y.
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As LICQ holds at all feasible points, by using a proof similar to the proof of
Theorem 3, pp. 21 in [19], we can show that generically with respect to the
function Φ ∈ [C3

S]mm, the problems V I(Φ,Rm
+ ∩ Bm√

p(0)) and V I(Φ, [0, 1]m) are

regular for t ∈ (0, 1). Moreover the only possible types of g.c. points, in the
generic case, are g.c. points of type 1, 2 and 3.

Here in both cases we can choose the embedding tΦ(y) + (1− t)c. A starting
solution y(0) = y0 at t = 0 must necessarily be a boundary point of Y . So we
will start with an active index set J0(y0) 6= ∅. In particular if c is a strictly
positive vector, y0 = 0 will be an starting solution with J0(y0) = {1, . . . ,m} and
a non-degenerate point of V IS(0,Φ, h, g).

3.4.2 Penalty embedding

Penalty embeddings for common optimization problems have been already de-
veloped in Dentcheva, Gollmer, Guddat and Rückmann [12] and in Gómez [20].
The main advantage of these embeddings is that under regularity assumptions, no
points of type 5 can occur. We extend this approach to variational inequalities,
and define, for the non-parametric problem V I(Φ, h, g) the parametric V I

V IP (t) : for t ∈ [0, 1], find (y, v, w)

such that ΦP (y, v, w, t)T

 zy − y
zv − v
zw − w

 ≥ 0, ∀z = (zy, zv, zw) ∈ YP (t),

where ΦP (y, v, w, t) =

 tΦ(y) + (1− t)y
v

w − eq

 and

YP (t) =

(y, v, w) ∈ Rm+q0+q

∣∣∣∣∣∣
thi(y) + (1− t)vi = 0, i = 1, . . . , q0,
tgj(y) + (1− t)wj ≥ 0, j = 1, . . . , q,

‖y, v, w‖2 ≤ p.


Here (v, w) ∈ Rq0 × Rq are additional variables, eq is the vector in Rq with all
components equal to 1, and p, p � 1, is a fixed parameter. A starting solution
for t = 0 is given by (y, v, w) = (0, 0, eq). This is a point of type 1 for V IP (0).
More precisely, it is the unique generalized critical point for V IP (0), see Definition
3.2.1, with multipliers µ, µ ≥ 0.

As in the standard case, we will refer to the functions that define the para-
metric embedding V IP (t) as

ΨP (t; Φ, h, g) =


ΦP (y, v, w, t)

thi(y) + (1− t)vi, i = 1, . . . , q0
tgj(y) + (1− t)wj, j = 1, . . . , q

p− ‖y, v, w‖2


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Proposition 3.4.2 The set
{
(Φ, h, g) ∈ [C3

S]m+q0+q
m

∣∣ΨP (t; Φ, h, g) ∈ FV I(t)|t∈(0,1]

}
is generic in [C3

S]m+q0+q
m .

Proof . We follow the lines of the proof of Proposition 3.4.1. We consider the

sets Ik =
{

(Φ, h, g) | ΨP (t; Φ, h, g) ∈ FV I(t)|t∈[ 1
k
,1]

}
, k = 2, 3, . . . , and prove that

they are open and dense in [C3
S]m+q0+q

m . To show that the sets Ik are dense, we
again have to apply a perturbation argument and a partition of unity. For the
open part, we use a local stability theorem and a locally finite cover, see the proof
of Theorem 6.25 in [21].
The result follows then by noticing that

{
(Φ, h, g)| ΨP (t; Φ, h, g) ∈ FV I(t)|t∈(0,1]

}
is equal to ∩∞k=2Ik, and Ik, k ≥ 2, are open and dense sets. 2

Remark 3.4.3 In contrast to the standard embedding, under regularity, there
will not appear points of type 5 for the penalty embedding, because the number
of variables is always greater than or equal to the number of possible active con-
straints. However the penalty embedding has the disadvantage of a larger number
of variables.

Consider again the special case of V I given by the NLCP, see (3.4.4), with
Y = Rm

+ . The penalty embedding leads to the problem,

for t ∈ [0, 1], find y

such that

(
tΦ(y) + (1− t)y

w − en

)T (
zy − y
zw − w

)
≥ 0, ∀(zy, zw) ∈ YP (t)

(3.4.6)

with sets

YP (t) =

{
(y, w) ∈ Rm+m

∣∣∣∣ ty + (1− t)w ≥ 0,
‖y, w‖2 ≤ p

}
which also satisfy the LICQ condition at all their feasible points.

Proposition 3.4.3 Let p > 0 be fixed. Then for all t ∈ [0, 1] the condition LICQ
is satisfied for problem (3.4.6).

Proof . As the first n constraints are linearly independent, the LICQ condition
could only fail if the compactification restriction is active and its gradient is a
linear combination of the gradients of the other |J0(y, w, t)|−1 active constraints.
This linear combination reads:(

tIJ0(y,w,t)\{m+1}
(1− t)IJ0(y,w,t)\{m+1}

)
λ = 2

(
y
w

)
for some λ ∈ Rm. This means that

tλJ0(y,w,t)\{m+1} = 2yJ0(y,w,t)\{m+1}
(1− t)λJ0(y,w,t)\{m+1} = 2wJ0(y,w,t)\{m+1}

0 = yJc
0(y,w,t)

0 = wJc
0(y,w,t).
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So, J c
0(y, w, t) = ∅ because, for i ∈ J c

0(y, w, t), the inequality tyi + (1 − t)wi > 0
should hold, in contradiction to wi = yi = 0. Consequently tyi + (1 − t)wi = 0,

i = 1, . . . ,m. Using the first two equations yields t2λi+(1−t)2λi

2
= 0, i = 1, . . . ,m.

So, λ = 0 = y = w. But as the compactification constraint is active it would
follow p = ‖y‖2 + ‖w‖2 = 0, contradicting p > 0. 2

By Proposition 3.4.3, g.c. points of type 4 and 5 are excluded for problem (3.4.6)
and it can be proven that generically w.r.t. Φ, all generalized critical points are
of type 1, 2 or 3.

The box constrained V I, i.e., Y = [0, 1]m, can be analogously embedded,
leading to the parametric problem

for t ∈ [0, 1] find y

such that

tΦ(y) + (1− t)y
w1 − en

w2 + en

T  zy − y
zw1 − w1

zw2 − w2

 ≥ 0, ∀(zy, zw1 , zw2) ∈ YP (t),

(3.4.7)
where

YP (t) =

(y, w1, w2) ∈ Rm+m+m

∣∣∣∣∣∣
ty + (1− t)w1 ≥ 0,
ty + (1− t)w2 ≤ t,
‖y, w1, w2‖2 ≤ p.


In contrast to the standard embedding the first 2m constraints do not guarantee
that YP (t) is compact. Moreover, LICQ may be violated as is shown by the
following result.

Proposition 3.4.4 Let m = 1. For any fixed p, p� 0, there is some t, t ∈ [0, 1]
and (y, w1, w2) ∈ YP (t), described in (3.4.7), such that LICQ fails.

Proof. We will construct a point (y, w1, w2, t) ∈ R × R × R × (0, 1) such that
all constraints are active and the gradient of the compactification constraint is a
linear combination of the others. This means that there exists (λ1, λ2) such that
the following system has a solution.

tλ1 + tλ2 = 2y,

(1− t)λ1 = 2w1

(1− t)λ2 = 2w2

ty + (1− t)w1 = 0

ty + (1− t)w2 = t,

y2 + w2
1 + w2

2 = p.
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Here the first three equations represent the linear combination of the gradients
and the last three, the activity condition J0(y, w1, w2, t) = {1, 2, 3}.

Substituting 2( w1

1−t
, w2

1−t
) for (λ1, λ2) in the first equation, we obtain:

y = t
w1 + w2

1− t
.

Using this expression in the equations ty + (1− t)w1 = 0, ty + (1− t)w2 = t, it
follows

τw1 + t2w2 = 0

t2w1 + τw2 = (1− t)t

where τ = t2 + (1 − t)2. Therefore, we find (w1, w2) = ( −t3(1−t)
(τ−t2)(τ+t2)

, tτ(1−t)
(τ−t2)(τ+t2)

)

and y = t2

τ+t2
.

Finally, as y2 +w2
1 +w2

2 = p, we need to prove that there is some t, t ∈ [0, 1] such

that the function p(t) := t4

(τ+t2)2
+ t2 (t4+τ2)(1−t)2

(τ−t2)2(τ+t2)2
satisfies p(t) = p.

As τ − t2 = (1− t)2 the previous expression simplifies to:

p(t) =
t4

(τ + t2)2
+ t2

(t4 + τ 2)

(1− t)2(τ + t2)2

When t → 1, it follows that p(t) → +∞ while p(0) = 0 < p. So there is a point
t, t ∈ (0, 1), such that p(t) = p and at the feasible point

(y, w1, w2, t) =

(
t
2

1− 2t+ 3t
2 ,

−t3

(1− t)(1− 2t+ 3t
2
)
,

t(1− 2t+ 2t
2
)

(1− t)(1− 2t+ 3t
2
)
, t

)

the LICQ condition fails. 2

With regard to the preceding proposition, for the box constrained V I, the
standard embedding behaves better than the penalty embedding.
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Chapter 4

Problems with complementarity
constraints

4.1 Introduction

In this chapter, we will study optimization problems of the form:

min
x

f(x)

s.t. x ∈MCC

MCC =

x ∈ Rn

∣∣∣∣∣∣∣∣
hk(x) = 0, k = 1, . . . , q0,
gj(x) ≥ 0, j = 1, . . . , q,

ri(x)si(x) = 0, i = 1, . . . , l,
ri(x), si(x) ≥ 0, i = 1, . . . , l


(4.1.1)

where f, hk, gj, ri, si : Rn → R, k = 1, . . . , q0, j = 1, . . . , q, i = 1, . . . , l are
assumed to be C2-functions.
The constraints ri(x)si(x) = 0, ri(x), si(x) ≥ 0 are called Complementarity Con-
straints and such problems will be termed problems with complementarity con-
straints, denoted as PCC . To keep the presentation as clear as possible, we omit
the equality constraints hk(x) = 0. So, in the Sections 4.2-4.6, the PCC problem
will be

PCC : min
x

f(x)

s.t. x ∈MCC

MCC =

x ∈ Rn

∣∣∣∣∣∣
gj(x) ≥ 0, j = 1, . . . , q,

ri(x)si(x) = 0, i = 1, . . . , l,
ri(x), si(x) ≥ 0, i = 1, . . . , l.


(4.1.2)

We, however, emphasize that all results of these sections remain true for prob-
lem (4.1.1) if additional LICQ conditions are assumed for the equality con-
straints hk(x) = 0. We will often use the abbreviations ĥi(x) := ri(x)si(x)
s(x) = (s1(x), . . . , sl(x)), r(x) = (r1(x), . . . , rl(x)) and g(x) = (g1(x), . . . , gq(x)).
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Complementarity constraints arise in problems with equilibrium conditions,
see [43], or as special cases in a so-called Kuhn Tucker approach for solving
problems with a bilevel structure, see e.g. [60] and Section 1.2. Other practical
examples appear when solving numerically problems from mathematical physics,
as presented in Section 1.4, see also [43].

It is well-known that problems with complementarity constraints cannot be
solved by using standard nonlinear programming approaches because the MFCQ
will never hold. Indeed, if at a feasible point x the relation ri0(x) = si0(x) = 0
holds for some i0 ∈ {1, . . . , l}, it follows

∇ĥi0(x) = si(x)∇ri0(x) + ri0(x)∇si0(x) = 0.

If ri(x) = 0 and si(x) > 0, then ∇ĥi(x) = si(x)∇ri(x) and there is no vector ξ
such that ∇ĥi(x)ξ = 0, ∇ri(x)ξ > 0.

To circumvent this problem and to obtain necessary optimality conditions,
generalized derivatives have been used in Ye [63], [64]. Pang and Fukushima
[44] derived optimality conditions by assuming an Abadie-type constraint quali-
fication. Fritz-John type necessary conditions were established by [14] based on
the relation between PCC and certain nonlinear optimization problems without
complementarity constraints via a disjunctive analysis. In this way a KKT-type
optimality condition can be obtained if a natural constraint qualification holds.

The sensitivity of PCC with respect to parameters has also been studied. Suf-
ficient conditions for stability of the value function and the stationary points were
obtained in [24] and [49], respectively.
Some specific algorithms for solving complementarity constrained problems have
been developed. In Schramm and Zowe [54], for example, a bundle method
is constructed. The algorithm PIPA, presented in [42], applies a penalty inte-
rior approach and solves the associated optimization problems using Sequential
Quadratic Programming (SQP) methods. The convergence of this algorithm is
proven under a strong hypothesis. SQP-type methods have been adapted to par-
ticular cases such as s(x) = (x1, . . . , xl) and r(x) satisfies a kind of convexity
condition (see Jiang and Ralph [26]) or s(x) = (x1, . . . , xl), r(x) = Qx + q, see
Fukushima, Luo and Pang [15], Liu, Perakis and Sun [40] and Zhang and Liu
[65].

A promising algorithmic idea is to substitute the complementarity constraints
ri(x)si(x) = 0 by the (regularizing) inequality ri(x)si(x) ≤ τ or by the smoothing
equality ri(x)si(x) = τ and to let τ → 0+. This kind of techniques have been
discussed in [51] and Ralph and Wright [47]. In Chen and Fukushima [10], this
approach is applied when s(x) = x, r(x) = Qx + q, and in Facchinei, Houyuan
and Liqun [13], for mathematical problems with V I constraints (1.1.8) using
NCP-functions.

Exact and L1-penalty strategies have also been used, see for example Lin
and Fukushima [38] and Scholtes and Stöhr [52], respectively. Besides, in Hu
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and Ralph [25], the complementarity constraints are smoothed and then solved
via a penalty function. They also presented a convergence analysis. Interior
point methods have also been implemented, see Benson, Shanno and Vanderbei
[5], Benson, Sen, Shanno and Vanderbei [6] and Raghunathan and Biegler [46].
Other algorithmic ideas are a branch and bound method in Liu and Zhang [39],
relaxation algorithms via a simplex representation in [37], an active-set algorithm
in Fukushima and Tseng [17], and an heuristic in Braun and Mitchell [8].

In this thesis, we consider the parametric smoothing approach Pτ , based on
the perturbation ri(x)si(x) = τ, i = 1, . . . , l. We study the convergence of the
solutions of Pτ when τ → 0+ and discuss the regularity of Pτ as a parametric
problem. We also present the generic singularities appearing in one-parametric
mathematical programs with complementarity constraints.
The chapter is organized as follows. In the next section the structure of the fea-
sible set, the active index set, the cone of feasible directions, etc., are presented.
The third section includes necessary optimality conditions, constraint qualifica-
tions and different types of stationarity concepts for PCC . Section 4.4 is divided
into two parts. In the first, we review the generic properties of PCC and, in
the second, necessary and sufficient primal-dual optimality conditions for local
minimizers of order 1 and 2 are presented. In Section 4.5, for the parametric
approach Pτ , we prove the existence of a sequence of local minimizers (stationary
points) of Pτ converging to a local minimizer (stationary point) of PCC with rate
O(
√
τ) when τ → 0. In Section 4.6, we show that, generically the problem Pτ

is in F(0,1] (cf. Definition 2.4.7). The chapter ends with a genericity analysis of
one-parametric mathematical programs with complementarity constraints. We
study the types of singularities that may appear at a generalized critical point in
the generic case and present the local behavior of the set of generalized critical
points around such a point.

4.2 Structure of the feasible set

We now analyze the structure of the feasible set MCC of PCC in (4.1.2).
To do so we make use of the disjunctive or piecewise structure of the problem.

Note that in each feasible point x either ri(x) or si(x) should be zero. So all
feasible points of PCC are given as feasible points of a problem

PI : min f(x)
s.t. gj(x) ≥ 0, j = 1, . . . , q,

ri(x) = 0, si(x) ≥ 0, i ∈ I,
si(x) = 0, ri(x) ≥ 0, i ∈ {1, . . . , l} \ I.

(4.2.1)

for some I ⊂ {1, . . . , l}.
To be more precise, for a feasible point x ∈ MCC we introduce the active

index sets:
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J0(x) = {j | gj(x) = 0 } ,
Ir(x) = {i | ri(x) = 0, si(x) > 0} ,
Is(x) = {i | si(x) = 0, ri(x) > 0} ,
Irs(x) = {i | ri(x) = si(x) = 0} .

For any I ⊂ Irs(x) the problem PI with I = Ir(x) ∪ I will be denoted by PI(x),
i.e.,

PI(x) : min f(x)
s.t. gj(x) ≥ 0, j = 1, . . . , q,

ri(x) = 0, si(x) ≥ 0, i ∈ Ir(x),
si(x) = 0, ri(x) ≥ 0, i ∈ Is(x),
ri(x) = 0, si(x) ≥ 0, i ∈ I,
si(x) = 0, ri(x) ≥ 0, i ∈ Irs(x) \ I.

(4.2.2)

Let MI(x) denote the feasible set of this program. Then obviously, the following
disjunctive or piecewise description holds.

Lemma 4.2.1 (cf. [42])
(a) There exists a neighborhood Bε(x) (ε > 0) of x such that

MCC ∩Bε(x) =
⋃

I⊂Irs(x)

(MI(x) ∩Bε(x)) .

(b) The point x ∈ MCC is a local minimizer of order ω of PCC if and only if x
is a local minimizer of order ω of PI(x) for all I ⊂ Irs(x).

Based on this lemma, optimality conditions and genericity results for PI(x) lead
directly to corresponding results for the complementarity constrained problem
PCC . This will be done in the next sections.

4.3 Necessary optimality conditions

This section introduces some notations and deals with different types of necessary
optimality conditions for PCC . We begin with some definitions. As usual

L(x, λ0, µ, ρ, σ) = λ0f(x)−
∑

j∈J0(x)

gj(x)µj−
∑

i∈Ir(x)∪Irs(x)

ri(x)ρi−
∑

i∈Is(x)∪Irs(x)

si(x)σi

denotes the Lagrangean function. Given x ∈ MCC and I ⊂ Irs(x) we introduce
the set of critical directions for PI(x):

CI(x) =

d ∈ Rn

∣∣∣∣∣∣∣∣∣∣
∇f(x)d ≤ 0, ∇gj(x)d ≥ 0, j ∈ J0(x),
∇ri(x)d = 0, ∇si(x)d ≥ 0, i ∈ I,
∇ri(x)d ≥ 0, ∇si(x)d = 0, i ∈ Irs(x) \ I,
∇ri(x)d = 0, i ∈ Ir(x),
∇si(x)d = 0, i ∈ Is(x).


(4.3.1)

50



We need some constraint qualifications.

Definition 4.3.1 Let x ∈MCC :

- MPCC-LICQ holds at x if ∇ri(x),∇sk(x),∇gj(x), i ∈ Ir(x) ∪ Irs(x),
k ∈ Is(x) ∪ Irs(x) j ∈ J0(x), are linearly independent.

- MPCC-MFCQ holds at x if the gradients ∇ri(x),∇sk(x), i ∈ Ir(x) ∪
Irs(x), k ∈ Is(x) ∪ Irs(x) are linearly independent and there is a vector
ξ such that ∇gj(x)

T ξ > 0, j ∈ J0(x) and ∇ri(x)
T ξ = 0,∇sk(x)

T ξ = 0,
i ∈ Ir(x) ∪ Irs(x), k ∈ Is(x) ∪ Irs(x).

We now introduce different types of stationarity.

Definition 4.3.2 Let x ∈MCC

- x is a Fritz John point of PCC if it is a Fritz John point for all problems
PI(x), I ⊂ Irs(x) (see (4.2.2)).

- x will be called weakly stationary if there are multipliers (λ0, µ, ρ, σ) not
all zero satisfying ∇L(x, λ0, µ, ρ, σ) = 0 and λ0, µ ≥ 0.

- If x is a weakly stationary point with σi · ρi ≥ 0,∀i ∈ Irs(x) for some
associated multiplier vector (λ0, µ, ρ, σ), then x is called a C-stationary
point.

- x is M-stationary if x is a weakly stationary point with an associated
multiplier (λ0, µ, ρ, σ) such that λ0 = 1 and for each i ∈ Irs(x) either
σi > 0, ρi > 0 or σi · ρi = 0 holds.

- If for all I ⊂ Irs(x), x is a stationary point of the nonlinear program PI(x)
(see Definition 2.2.3) then x is called a B-stationary point.

- A-stationary points are weakly stationary points with associated multiplier
(λ0, µ, ρ, σ) satisfying λ0 = 1 and for all i ∈ Irs(x), σi or ρi is non-negative,
i.e, there is some I, I ⊂ Irs(x) such that x is a stationary point of PI(x).

- x is called a strongly stationary point if the weak stationarity conditions
are satisfied with multiplier (λ0, µ, ρ, σ), fulfilling λ0 = 1 and σi, ρi ≥ 0,
i ∈ Irs(x).

Let x be feasible for the complementarity constrained problem PCC in (4.1.2).
Consider two related problems, the tightened problem

PT (x) : min f(x)
s.t. x ∈MT

(4.3.2)
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MT =

x ∈ Rn

∣∣∣∣∣∣∣∣
gj(x) ≥ 0, j = 1, . . . , q,

ri(x) = 0, si(x) ≥ 0, i ∈ Ir(x),
si(x) = 0, ri(x) ≥ 0, i ∈ Is(x),
ri(x) = 0, si(x) = 0, i ∈ Irs(x)


and the relaxed problem

PR(x) : min f(x)
s.t. x ∈MR

(4.3.3)

MR =

x ∈ Rn

∣∣∣∣∣∣∣∣
gj(x) ≥ 0, j = 1, . . . , q,

ri(x) = 0, si(x) ≥ 0, i ∈ Ir(x),
si(x) = 0, ri(x) ≥ 0, i ∈ Is(x),
ri(x) ≥ 0, si(x) ≥ 0, i ∈ Irs(x).


Note that, if x is a strongly stationary point of PCC , then x is also a stationary
point (in the classical sense) of PR(x). Note also that MPCC-LICQ holds at
x ∈ MCC if and only if LICQ is satisfied at x in MR. The condition MPCC-
MFCQ is stronger than the fulfillment of MFCQ for PR. From the definitions,
the following proposition is immediate.

Proposition 4.3.1 For a point x ∈MCC, the following holds:
MPCC-LICQ for PCC ⇔ LICQ for PT (x) ⇔ LICQ for PR(x).
MPCC-MFCQ for PCC ⇔ MFCQ for PT (x) ⇒ MFCQ for PR(x).

We mention the following necessary optimality conditions without proof.

Proposition 4.3.2 (cf. [14]) For PCC, the following relations hold:

(a) Strong ⇒M- ⇒ C- ⇒ weak stationarity.
Strong ⇒ B- ⇒ A- ⇒ weak stationarity.

(b) If x is a local minimizer then it is a C-stationary point.

(c) If MPCC-MFCQ holds at a local minimizer x of PCC then x is A-stationary.

(d) If x is a local minimizer and MPCC-LICQ is satisfied, then x is a strongly
stationary point. In this case B- and strong stationarity are equivalent.

We will say that the strict complementarity property holds for PCC at a feasible
point x if

ri(x) + si(x) > 0, ∀i = 1, . . . , l. (SC)

In this case all the problems PT (x), PI(x) , PR(x) coincide and the stationarity
definitions are equivalent. Furthermore, the problem PCC can then be treated as
a standard finite program. In [42] the convergence of an algorithm for MPCC
has been obtained under the condition SC. However, for complementarity con-
strained problems this condition is not usually fulfilled, as can be seen in the
following standard example.
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Example 4.3.1

minx1 + x2

s.t. x1x2 = 0,
x1, x2 ≥ 0.

Here SC fails at the minimizer x = (0, 0) even if small perturbations of the
involved functions are considered.

This example shows that, even in the generic case, around local minimizers the
SC condition may fail. We therefore analyze the PCC problem under weaker
assumptions. To do so we make use of the disjunctive structure of MCC (see
Section 4.2) and define the cone of critical directions at x ∈MCC by

Cx =
⋃

I⊂Irs(x)

CI(x), (4.3.4)

where CI(x) is the cone of critical directions of the problem PI(x).

Definition 4.3.3 We say that x ∈ MCC is a g.c. point of PCC if there is a
multiplier vector (λ0, µ, ρ, σ) 6= 0 such that ∇xL(x, λ0, µ, ρ, σ) = 0.
Let x be a g.c. point with associated multiplier vector (1, µ, ρ, σ). We say that
the MPCC-strict complementarity condition (MPCC-SC) holds if

µj 6= 0, ∀j ∈ J0(x), ρi 6= 0, σi 6= 0, ∀i ∈ Irs(x). (4.3.5)

The MPCC second order condition (MPCC-SOC) is satisfied if

dT∇2
xL(x, 1, µ, ρ, σ)d 6= 0, ∀d ∈ TxMR\{0}. (4.3.6)

A point x ∈ MCC such that MPCC-LICQ, MPCC-SC, and MPCC-SOC holds
is called a non-degenerate critical point in the MPCC-sense.

If at a g.c. point x the MPCC-LICQ condition holds, then there is a unique
multiplier vector (1, µ, ρ, σ) such that ∇xL(x, 1, µ, ρ, σ) = 0. If x is also a B-
stationary point, then the same unique multiplier vector (1, µ, ρ, σ) solves the
KKT system corresponding to PI(x) for all I ⊂ Irs(x). Moreover it is not difficult
to see that in this case the set Cx simplifies:

Cx =


d ∈ Rn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∇gj(x)d
=
≥ 0 if µj

>
=

0, j ∈ J0(x),

∇ri(x)d
=
≥ 0 if ρi

>
=

0, i ∈ Irs(x),

∇si(x)d
=
≥ 0 if σi

>
=

0, i ∈ Irs(x),

∇ri(x)d = 0, i ∈ Ir(x),
∇si(x)d = 0, i ∈ Is(x).


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In the case of B-stationary points where MPCC-SC holds, the cone of critical
directions becomes:

Cx =


d ∈ Rn

∣∣∣∣∣∣∣∣∣∣∣

∇gj(x)d = 0, j ∈ J0(x),

∇ri(x)d = 0, i ∈ Irs(x),
∇si(x)d = 0, i ∈ Irs(x),

∇ri(x)d = 0, i ∈ Ir(x),
∇si(x)d = 0, i ∈ Is(x)


(4.3.7)

i.e., Cx coincides with TxMR
, the tangent subspace of MR in x.

Note that if x is a non-degenerate critical point in the MPCC-sense, then
µj 6= 0, j ∈ J0(x) ρi, σi 6= 0, i ∈ Irs(x) and ∇2

xL|TxMR
(x, 1, µ, ρ, σ) is non-

singular. This means x is a non-degenerate critical point of the relaxed problem
PR(x) and thus also an (isolated) non-degenerate g.c. point of PCC .

If x is a non-degenerate critical point in the MPCC-sense, such that
µj > 0, j ∈ J0(x) ρi, σi > 0, i ∈ Irs(x) and ∇2

xL|TxMR
(x, 1, µ, ρ, σ) � 0 are

fulfilled, then x is a local minimizer of PR(x). As locally MCC ⊂ MR holds, x
will also be a local minimizer of PCC in this case.

4.4 Optimality conditions based on the disjunc-

tive structure

In this section we show how optimality conditions can simply be derived from
the piecewise structure of the problems PCC , see Section 4.2. These conditions
are obtained under assumptions which are shown to be generic.

4.4.1 Genericity results for non-parametric PCC

In this part we will review the genericity results of [53] needed in the next sections.
By using the piecewise description (see Lemma 4.2.1) in principle, optimality con-
ditions and genericity results for PI(x) lead directly to corresponding results for
PCC . Let, in the sequel, all functions f, gj, si, ri be in the space [C2]1n endowed
with the C2

S-topology, see Section 2.3. So, the set of problems PCC can be identi-
fied with the set P := {(f, g, s, r)} = [C2]1+q+2l

n . We say that a property for PCC

is generic if it holds for a subset of P which is dense and open with respect to
the C2

S-topology.
From the well-known genericity results for nonlinear programming problems,

see [22], we obtain the following genericity results, see [53].

Theorem 4.4.1 (cf. [53]) Generically for problems PCC the following holds.
For any feasible point x ∈ MCC the MPCC-LICQ condition is satisfied. More-
over any g.c. point is a non-degenerate critical point in the MPCC-sense, i.e.,
the conditions MPCC-LICQ, MPCC-SC and MPCC-SOC are fulfilled.
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Proof . Let us fix a partition (Ir, Irs, Is) of {1, . . . , l} corresponding to the active
index triplet of a point x ∈MCC . Let PR(x) be the associated relaxed problem.
Generically by Theorem 2.2.2, at all feasible points of PR(x), LICQ holds and all
its generalized critical points are non-degenerate, see Definition 2.2.5. We take
the (finite) intersection of all these generic sets of functions, corresponding to all
finitely many possible partitions (Ir, Irs, Is). Then the set of functions (f, g, r, s),
such that for all corresponding possible problems PR(x) the LICQ condition holds
at all its feasible points and all generalized critical points are non-degenerate, is
generic.
Now, if x ∈MCC , then x is feasible for PR(x) associated with Ir(x), Irs(x), Is(x).
As LICQ holds generically for MR, the MPCC-LICQ condition is fulfilled for
MCC . Moreover, if x is a g. c. point of PCC , then it is also a generalized criti-
cal point of PR(x) (see Definition 2.2.3) and thus, generically, a non-degenerate
critical point of PCC .

2

4.4.2 Optimality conditions for problems PCC

In this part we are interested in necessary and sufficient optimality conditions
for minimizers of order one and two for problems PCC in (4.1.2), see Definition
2.2.1. Using the piecewise description, see Lemma 4.2.1, all standard optimality
conditions for PI(x) can directly be translated into corresponding results for PCC .

We begin with characterizations for minimizers of order one.

Theorem 4.4.2 (Primal conditions of order 1) For x ∈MCC:

Cx = {0} ⇒ x is a (isolated) local minimizer of order 1 of PCC .

If MPCC-LICQ holds at x also the converse is true.

Proof. It is well-known, see e.g. Still and Streng [Th.3.2,3.6] [62], that
CI(x) = {0} implies that x is an (isolated) local minimizer of order 1 of PI(x)
and under MPCC-LICQ the converse holds. With regard to the definition of Cx

in (4.3.4) the result follows from Lemma 4.2.1.

2

Theorem 4.4.3 (Dual conditions of order 1) Let MPCC-LICQ hold at
x ∈MCC. Then x is an (isolated) local minimizer of order 1 of PCC if and only
if one of the following equivalent conditions (a) or (b) holds:
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(a) ∇f(x) ∈ int Q x, where

Q x =


d =

∑
j∈J(x)

µj∇gj(x) +
∑

i∈Irs(x)

(
ρi∇ri(x) + σi∇si(x)

)
+

+
∑

i∈Ir(x)

ρi∇ri(x) +
∑

i∈Is(x)

σi∇si(x)

µj ≥ 0, j ∈ J0(x), ρi ≥ 0, σi ≥ 0, i ∈ Irs(x).


(b) The vector x is a B-stationary point with (unique) multipliers 1, µ, ρ, σ such
that |J0(x)| + 2|Irs(x)| + |Ir(x)| + |Is(x)| = n and µj > 0, j ∈ J0(x), ρi > 0,
σi > 0, i ∈ Irs(x).

Proof. It is well-known that the primal condition CI(x) = {0} is equivalent with
the condition ∇f(x) ∈ int Q I(x), where

Q I(x) =


d =

∑
j∈J0(x)

µj∇gj(x) +
∑

i∈Irs(x)

(
ρi∇ri(x) + σi∇si(x)

)
+

+
∑

i∈Ir(x)

ρi∇ri(x) +
∑

i∈Is(x)

σi∇si(x)

µj ≥ 0, j ∈ J0(x), ρi ≥ 0, i ∈ Irs(x) \ I, σi ≥ 0, i ∈ I


Applying Lemma 4.2.1 under MPCC-LICQ, yields (a).

(b) We now prove that under MPCC-LICQ (a) ⇔ (b). Note that the suf-
ficiency is evident. To prove the converse let us assume that ∇f(x) ∈ Q I(x)
and |J0(x)| + 2|Irs(x)| + |Ir(x)| + |Is(x)| < n. This means that there exists
d, d ∈ Rn, such that d /∈ S0, where S0 is the subspace generated by the vec-
tors ∇gj(x), j ∈ J0(x), ∇ri(x), i ∈ Irs(x) ∪ Ir(x), ∇si(x), i ∈ Irs(x) ∪ Is(x).
Note that, since (x, 1, µ, ρ, σ) is a B-stationary solution, it follows that S0 =
span {{−∇f(x)}∪S0}. Consequently, for any ε > 0, εd /∈ span {{−∇f(x)}∪S0}
and thus ∇f(x) + εd /∈ span S0 in contradiction to (a). Let us now assume that
MPCC-SC does not hold, say µ1 = 0. Then, by MPCC-LICQ, for any ε > 0 the
vector ∇f(x)− ε∇g1(x) is not contained in Qx, a contradiction.

2

We now turn to sufficient and necessary optimality conditions of order two. For
the sufficient part we refer also to [53].

Theorem 4.4.4 (Dual conditions of order 2) Let MPCC-LICQ hold at
x ∈ MCC and assume Cx 6= {0}, i.e., x is not a local minimizer of order 1.
Then x is an (isolated) local minimizer of order 2 of PCC if and only if x is a B-
stationary point of PCC with (unique) multipliers (1, µ, ρ, σ) such that MPCC-SC
is satisfied and the condition MPCC-SOC holds with dT∇2

xL(x, 1, µ, ρ, σ)d > 0
∀d ∈ Cx\{0}.
Under this condition, x is locally a unique B-stationary point of PCC.
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Proof. Cx 6= {0} implies CI(x) 6= {0} for (at least) one set I ⊂ Irs(x) and by
[62, Th.3.6], under LICQ, x is a (isolated) local minimizer of order 2 of PI(x) if
and only if x is a KKT point satisfying the second order sufficient condition at
problem PI(x) for all I ⊂ Irs(x). Again the result follows from Lemma 4.2.1.

2

Note that in view of the genericity result in Theorem 4.4.1 the following is true:

Corollary 4.4.1 Generically each local minimizer of PCC is either of order 1 or
of order 2.

It is interesting to note that with respect to the relaxed problem PR(x) (4.3.3)
the following holds:

Corollary 4.4.2 Let MPCC-LICQ be satisfied at x ∈ MCC. Then x is a local
minimizer of order 1 or 2 of PCC if and only if x is a local minimizer of order 1
or 2 of PR(x) (4.3.3).

Proof. Under MPCC-LICQ any local minimizer x of PCC must be a strongly
stationary point of PCC with unique multipliers (1, µ, ρ, σ). Note that, as the La-
grange functions of PR and PCC are the same, (x, 1, µ, ρ, σ) is also a KKT solution
of PR(x). Moreover the set of critical directions for PR(x) coincides with Cx, see
(4.3.7). So the first order optimality condition Cx = {0}, cf. Theorem 4.4.2, and
the second order conditions, cf. Theorem 4.4.4, of PCC and PR(x) coincide.

2

4.5 A parametric solution method

As it has been already remarked, to solve PCC (see (4.1.2)) a parametric approach
can be used, see also e.g. [16]. Here we consider the perturbed problem

Pτ : min
x

f(x)

s.t. x ∈Mτ

(4.5.1)

Mτ =

x ∈ Rn

∣∣∣∣∣∣
gj(x) ≥ 0, j = 1, . . . , q,

ri(x)si(x) = τ, i = 1, . . . , l,
ri(x), si(x) ≥ 0, i = 1, . . . , l


where τ, τ > 0, is a perturbation parameter. We expect that, by letting τ → 0,
there is a solution xτ of Pτ converging to a solution x of PCC . In the following
we intend to analyze this approach. Under natural (generic) assumptions it will
be shown that we generally can expect a rate

‖xτ − x‖ = O(
√
τ).
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Other regularizations of MPCC problems have been considered in the literature
such as

P≤τ : min
x

f(x)

s.t. gj(x) ≥ 0, j = 1, . . . , q,
ri(x)si(x) ≤ τ, i = 1, . . . , l,

ri(x), si(x) ≥ 0, i = 1, . . . , l.

(4.5.2)

P̂≤
τ : min

x
f(x)

s.t. gj(x) ≥ 0, j = 1, . . . , q,
rT (x)s(x) ≤ τ,

ri(x), si(x) ≥ 0, i = 1, . . . , l.

(4.5.3)

In [51], assumptions under which stationary points x(τ) of P≤τ , τ ↓ 0, converge
to a B-stationary point of PCC are given. In [47] it is shown that (under natural
conditions) the solutions x(τ) of P≤τ converge to a (nearby) solution x of PCC

with order O(τ). Similar results are stated for the problem P̂≤
τ .

Remark 4.5.1 We emphasize that these regularizations P≤τ , P̂≤
τ structurally

completely differ from the smoothing approach Pτ . For P≤τ , e.g., the following is
shown in [51, Th.3.1,Cor.3.2]: If x is a solution of PCC where MPCC-LICQ and
MPCC-SC hold then for the (nearby) minimizers x̂τ of P≤τ (for τ small enough)
the complementarity constraints ri(x) si(x) ≤ τ , i ∈ Irs(x), are not active. More
precisely,

ri(x̂τ ) = si(x̂τ ) = 0 , ∀i ∈ Irs(x),

is true. This fact also directly follows from Corollary 4.4.2. In particular, in the
case Irs(x) = {1, . . . , l} (for all small τ > 0) the solution x̂τ of P≤τ coincides with
the solution x of PCC.

Note that the perturbation ri(x)si(x) = τ in Pτ is also different from the following
parametric MPCC, considered in [24] (see also Section 4.7)

P (τ) : min
x
f(x, τ)

s.t. gj(x, τ) ≥ 0, j = 1, . . . , q,

ri(x, τ) · si(x, τ) = 0, i = 1, . . . , l,

ri(x, τ) , si(x, τ) ≥ 0, i = 1, . . . , l.

with f, gj, ri, si ∈ C2 (w.r.t. all variables). Near a non-degenerate solution x of
P (τ), the value function will depend smoothly on the parameter τ . However,
for the problem Pτ in (4.5.1), the value function does not depend smoothly on
τ, τ ≈ 0, even in the non-degenerate case, as can be seen in Example 4.5.1 later
on.
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Remark 4.5.2 We recall that under appropriate LICQ conditions all results
for 4.1.2 remain true for problems PCC in (4.1.1), with additional equality con-
straints.

Let in the following ϕ, ϕτ denote the marginal values and MCC , Mτ the feasible
sets of PCC , Pτ respectively.

4.5.1 Motivating examples

We begin with some illustrative examples.

Example 4.5.1
minx1 + x2

s.t. x1 x2 = 0,
x1, x2 ≥ 0.

Here the set Mτ converges to the set MCC and the solutions xτ = (
√
τ ,
√
τ) of

Pτ converge to the solution x = 0 of the original problem with a rate

‖xτ − x‖ =
√

2 ·
√
τ .

In general, we cannot expect that the solutions of Pτ converge to a solution of
PCC . As we can see in the next example, they may even not converge to a feasible
point if the feasible set is non-compact:

Example 4.5.2 Consider

min (x2 − 1)2

s.t. x2e
−x1 = 0,

x2, e
−x1 ≥ 0

with MCC = {(x1, 0), x1 ∈ R} , and

min (x2 − 1)2

s.t. (x2
1 + x2

2)e
−x1 = 0,

(x2
1 + x2

2), e
−x1 ≥ 0

with MCC = {(0, 0)} .
In both examples the feasible set and the set of minimizers coincide.

Note that in the first example x2 = 0 < e−x1 and ∇x2 6= 0. So MPCC-
LICQ holds. However, for all τ, τ > 0, the point (−ln(τ), 1) ∈ Mτ is the global
minimizer of Pτ , and these points do not approach to the set of minimizers of
PCC .
In the second example, MCC is bounded but it can be proven that Mτ is not.

The next example shows that to assure Mτ 6= ∅, the MPCC-LICQ condition
cannot be relaxed by the fulfillment of MFCQ in MR, see (4.3.3).
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Example 4.5.3 Consider the feasible set defined by r1(x) = x, r2(x) = ex − 1,
and s1(x) = s2(x) = 1, i.e.,

MCC =

x ∈ R

∣∣∣∣∣∣
x · 1 = 0,

(ex − 1) · 1 = 0,
x, (ex − 1), 1 ≥ 0.


The unique solution of the complementarity problem is x = 0. However, Mτ = ∅,
for any τ, τ > 0. Moreover MFCQ holds at x for MR

The last example shows that a bad convergence rate of the smoothing approach
is possible.

Example 4.5.4 (cf. [47])

minxk
1 + x2

s.t. x1x2 = 0,
x1, x2 ≥ 0,

with k > 0. Here the minimizer is x = (0, 0) and the solution of the corresponding

problem Pτ is xτ = (( τ
k
)

1
k+1 , k

1
k+1 τ

k
k+1 ). So the convergence rate is O(τ

1
k ) with

arbitrary large k > 0. Note that for k > 1, the MPCC-SC condition fails at the
minimizer x = (0, 0).

In the following we are interested in the convergence of the feasible sets Mτ , the
value function ϕτ and the solutions xτ of Pτ , i.e., we study the convergence

Mτ →MCC , ϕτ → ϕ and xτ → x for τ → 0.

We will also obtain the rate of this convergence.
Firstly, motivated by Example 4.5.2, we restrict the feasible set to a compact

subset X, X ⊂ Rn. Note that, in practice, this does not mean a restriction since
it is advisable to add (if necessary) e.g. box constraints, xν ≤ ±K, ν = 1, . . . , n,
for some large number K. So, we will assume:

A0. Mτ ⊂ X for all τ ≥ 0 where X is a compact subset of Rn. (4.5.4)

4.5.2 The convergence behavior of the feasible set

In this part, we consider the convergence behavior of the feasible set Mτ . We
will show that, under natural assumptions on the problem PCC for all x ∈MCC ,
d(x,Mτ ) = O(

√
τ) holds and d(xτ ,MCC) = O(

√
τ), for xτ ∈Mτ , τ → 0.

We define the active index sets (J0(x), Ir(x), Is(x), Irs(x)) of x ∈ MCC , as in
the Section 4.2. To avoid the bad behavior in Example 4.5.2 and Example 4.5.3
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(cf. Section 4.5.1) we will assume that condition A0 (see (4.5.4)), holds and that
MPCC-LICQ is fulfilled for MCC , globally or locally. We emphasize that these
assumptions are generically satisfied, see Theorem 4.4.1. We begin with a general
lemma.

Lemma 4.5.1 For any sequence xτ ∈ Mτ and τ → 0 it follows that
d(xτ ,MCC) → 0 uniformly: i.e., to any ε > 0 there exists τ0, τ0 > 0 such
that for all τ, 0 < τ ≤ τ0, and xτ ∈Mτ , the bound d(xτ ,MCC) < ε holds.

Proof. Assuming that the statement is not true, there must exist γ, γ > 0 and
a sequence xτ ∈Mτ , such that, for τ → 0,

d(xτ ,MCC) ≥ γ.

Due to the compactness assumption A0 we can choose a convergent subsequence
xτ → x ∈ X. The condition ri(xτ )si(xτ ) = τ , together with the continuity of the
functions ri, si leads, for τ → 0, to ri(x)si(x) = 0, i.e., x ∈MCC , a contradiction.

2

To prove our main results on the behavior of Mτ , we make use of a local diffeo-
morphism. Such a transformation has been applied in [53] to illustrate the local
behavior of MCC . Here we present a complete global analysis. The use of this
transformation makes the proofs of the main results technically much simpler,
however this approach relies on the MPCC-LICQ assumption.
Consider a point x ∈ MCC with |J0(x)| = q̂, 2|Irs(x)| + |Ir(x)| + |Is(x)| = l + p
where p ≤ l, q̂ ≤ q and l + p+ q̂ ≤ n. W.l.o.g. we can assume:

J0(x) = {1, . . . , q̂}, Irs(x) = {1, . . . , p}, Ir(x) = {p+ 1, . . . , l}, Is(x) = ∅.
(4.5.5)

By the MPCC-LICQ condition, ∇g1(x), . . . ,∇gq̂(x), ∇ri(x), i = 1, . . . , l, ∇si(x),
i = 1, . . . , p are linearly independent and we can complete these vectors to a
basis of Rn by adding vectors vi, i = l + p + q̂ + 1, . . . , n. Now we define the
transformation y = T (x) by:

yi = ri(x), i = 1, . . . , l, yi+l = si(x), i = 1, . . . , p,
yl+p+j = gj(x), j = 1, . . . , q̂, yi = vT

i (x− x), i > l + p+ q̂.
(4.5.6)

By construction the Jacobian ∇T (x) is regular. So T defines locally a diffeomor-
phism. This means that there exists ε, ε > 0, and neighborhoods Bn

ε (x) of x and
Uε(y) := T (Bn

ε (x)) of y = 0 such that T : Bn
ε (x) → Uε(y) is a bijective mapping

with T, T−1 ∈ C1, T (x) = y and for y = T (x) it follows that

x ∈Mτ ∩Bn
ε (x) ⇔

yl+p+j ≥ 0, j = 1, . . . , q̂,
yi · yl+i = τ, i = 1, . . . , p,
yi · s̃i(y) = τ, i = p+ 1, . . . , l,

yi ≥ 0, i = 1, . . . , l + p,
y ∈ Uε(y).
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where s̃i(y) = si(T
−1(y)) = si(x) =: csi , csi > 0, i = p + 1, . . . , l and

g̃j(y) = gj(T
−1(y)) = gj(x) =: cgj , c

g
j > 0, j = q̂ + 1, . . . , q.

In particular, since T is a diffeomorphism, the distance between two points
remains equivalent in the sense that with some constants 0 < κ− < κ+:

κ−‖y1−y2‖ ≤ ‖x1−x2‖ ≤ κ+‖y1−y2‖, ∀x1, x2 ∈ Bn
ε (x), y1 = T (x1), y2 = T (x2).

So, after applying a diffeomorphism T , we may assume x = 0 and that there is
some ε, ε > 0, such that for x ∈ Bn

ε (x):

x ∈Mτ ⇔

gj(x) = xl+p+j ≥ 0, j = 1, . . . , q̂,

ĥi(x) = xi · xl+i = τ, i = 1, . . . , p,

ĥi(x) = xi · si(x) = τ, i = p+ 1, . . . , l,
xi ≥ 0, i = 1, . . . , l + p.

(4.5.7)

Moreover, since si(x) =: csi , c
s
i > 0, i = p + 1, . . . , l and gj(x) =: cgj , c

g
j > 0,

j = q̂ + 1, . . . , q, by choosing ε small enough we also can assume:

si(x) ≥
csi
2
, i = p+ 1, . . . , l and gj(x) ≥

cgj
2
, j = q̂ + 1, . . . , q, ∀x ∈ Bn

ε (x).

(4.5.8)

Lemma 4.5.2 Let MPCC-LICQ hold at x ∈MCC.
(a) Then there exist ε, τ0, α, β > 0 such that for all τ, 0 < τ ≤ τ0 the following
holds: there exists xτ ∈Mτ with

‖xτ − x‖ ≤ α
√
τ (4.5.9)

and, for any xτ ∈ Mτ ∩ Bn
ε (x), there exists a point x̂τ , x̂τ ∈ MCC ∩ Bn

ε (x)
satisfying

‖x̂τ − xτ‖ ≤ β
√
τ . (4.5.10)

Moreover, if SC holds at x (cf. Section 4.3), the statements are true with
√
τ

replaced by τ .

(b) If the condition SC is not fulfilled at x then the convergence rate O(
√
τ)

in (4.5.9) is optimal. More precisely, there is some γ, γ > 0, such that for all
xτ ∈Mτ the relation ‖xτ − x‖ ≥ γ

√
τ holds for all small τ .

Proof. (a) Let MPCC-LICQ hold at x ∈ MCC . As discussed before (after
applying diffeomorphism) we can assume that x = 0 and that in a neighborhood
Bn

ε (x) of x the set Bn
ε (x) ∩Mτ is described by (4.5.7). To construct an element

xτ ∈ Mτ , we fix the components xτ
i = xτ

l+i =
√
τ , i = 1, . . . , p and xτ

i = 0,
i = l + p+ 1, . . . , n. From (4.5.7) we then find:

gj(x
τ ) = 0, j = 1, . . . , q̂,

ĥi(x
τ ) = τ, i = 1, . . . , p,

ĥi(x
τ ) = xτ

i · si(x
τ ) = τ, i = p+ 1, . . . , l.
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We only need to consider the remaining relations

ĥi(x̃) := xτ
i · si(x̃) = τ, i = p+ 1, . . . , l. (4.5.11)

which (for fixed τ) only depend on the remaining variables x̃ = (xτ
p+1, . . . , x

τ
l ).

For x̃ = 0 the gradients ∇ĥi(0) = eisi(0) = eic
s
i , i = p + 1, . . . , l, are lin-

early independent. So the function H : Rl−p → Rl−p, H = (ĥp+1, . . . , ĥl) with
H(0) = 0 has locally near x̃ = 0 a C1 inverse such that (for small τ) the vector
x̃τ := H−1(e τ), with e = (1, . . . , 1) ∈ Rl−p, defines a solution of (4.5.11). Because
of H−1(0) = 0 it follows that ‖x̃τ‖ = O(τ).

Altogether with the other fixed components, this vector x̃τ defines a feasible
point xτ ∈Mτ which satisfies

‖xτ − x‖ ≤ O(
√
τ).

We now prove (4.5.10). As shown above, see (4.5.7), for some ε, ε > 0, the
point xτ ∈ Bn

ε (x) is in Mτ if and only if x := xτ satisfies the relations

gj(x) = xl+p+j ≥ 0, j = 1, . . . , q̂,
hi(x) = xi · xl+i = τ, i = 1, . . . , p,
hi(x) = xi · si(x) = τ, i = p+ 1, . . . , l.

Obviously, min{xi, xl+i} ≤
√
τ , i = 1, . . . , p, so w.l.o.g. we assume xi ≤

√
τ ,

i = 1, . . . , p. By (4.5.8) for x = xτ ∈ Bn
ε (x) it follows that

xi =
τ

si(x)
≤ τ

csi/2
≤ τ

cs
, i = p+ 1, . . . , l, (4.5.12)

where cs = min{csi/2, i = p+1, . . . , l}. Given this element x = xτ ∈Mτ we now
choose the point x̂τ of the form x̂τ = (0, . . . , 0, xl+1, . . . , xn) which is contained
in MCC . By using (4.5.12) and xi ≤

√
τ , i = 1, . . . , p, we find (x = xτ )

‖x̂τ − xτ‖ ≤

√
p τ + (l − p)

τ 2

c2s
≤ O(

√
τ).

Let now SC be satisfied at x ∈ MCC , x = 0. Then locally in Bn
ε (x), see above,

the set Mτ is defined by

gj(x) = xl+p+j ≥ 0, j = 1, . . . , q̂,
xi · si(x) = τ, i = 1, . . . , l,

(4.5.13)

and si(x) ≥ cs1/2, for all x ∈ Bn
ε (x). As in the first part of proof, we can fix

the coefficients of x = xτ by xl+i = xi(= 0), i = l + 1, . . . , n and find a solution
x ∈Mτ by applying the inverse function theorem to the remaining l equations

ĥi(x̃) := xisi(x̃) = τ , i = 1, . . . , l.
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only depending on the remaining variables x̃ := (x1, . . . , xl). This provides us
with a solution x = xτ of (4.5.13) with

‖xτ − x‖ = O(τ).

On the other hand for any solution x := xτ of (4.5.13) in Bn
ε (x) the point

x̂τ = (0, . . . , 0, xl+1, . . . , xn) is an element in MCC with ‖x̂τ − xτ‖ = O(τ).

(b) Suppose that SC is not fulfilled at x, i.e., for some i0 ∈ {1, . . . , l}, see (a),

ĥi(x) = xi0 · xl+i0 = 0 with xi0 = xl+i0 = 0.

Then near x any point x̂ := xτ ∈Mτ must satisfy x̂i0 · x̂l+i0 = τ which implies

‖xτ − x‖ ≥ max{x̂i0 , x̂l+i0} ≥
√
τ .

Recall that, due to the applied diffeomorphism, this inequality only holds up to
a positive constant. 2

Lemma 4.5.2 yields the local convergence of Mτ , near a point x ∈ MCC . We
now are interested in the global convergence behavior.

Lemma 4.5.3 Let A0 hold, see (4.5.4). Suppose MPCC-LICQ is satisfied at
each point x ∈MCC. Then there are τ0, α, β > 0 such that for all τ, 0 < τ ≤ τ0,
the following holds:
For each x ∈MCC there exists xτ , xτ ∈Mτ with

‖xτ − x‖ ≤ α
√
τ , (4.5.14)

and for any xτ ∈Mτ there exists a point x̂τ , x̂τ ∈MCC satisfying

‖x̂τ − xτ‖ ≤ β
√
τ . (4.5.15)

Moreover, if SC holds at all x ∈ MCC the statements are true with
√
τ replaced

by τ .

Proof. We firstly prove (4.5.15). Recall the local transformation constructed
above near any point x ∈ MCC , see 4.5.7. The union ∪x∈MCC

Bn
ε(x)(x) forms an

open cover of the compact feasible set MCC ⊂ X. Consequently we can choose
a finite cover, i.e., points xν ∈ MCC , ν = 1, . . . , N , such that with εν = ε(xν)
the set ∪ν=1,...,NB

n
εν

(xν) provides an open cover of MCC and with βν > 0 the
corresponding condition (4.5.10) holds.
By defining Bε(MCC) = {x ∈ X | d(x,MCC) < ε} we can choose some ε0, ε0 > 0
(small) such that

Bε0(MCC) ⊂
⋃

ν=1,...,N

Bn
εν

(xν).

64



By choosing ε = ε0 and τ0 in Lemma 4.5.1 we find for all τ, 0 ≤ τ ≤ τ0,

Mτ ⊂ Bε0(MCC) ⊂
⋃

ν=1,...,N

Bn
εν

(xν).

The second convergence result (4.5.15) directly follows by combining the finite
cover argument with the local convergence and by noticing that we can choose
as convergence constant the number β = max{βν ; ν = 1, . . . , N}.

To prove (4.5.14) we have to show that the following sharpening of the local
bound (4.5.9) holds: For x ∈ MCC there exist τ0, τ0 > 0 and ε, ε > 0, such
that for any x ∈ MCC ∩ Bn

ε (x) and for any τ, 0 ≤ τ ≤ τ0, there is a point
xτ , xτ ∈Mτ with

‖xτ − x‖ ≤ α
√
τ . (4.5.16)

Then a finite cover argument as above yields the global relation (4.5.14).

We only sketch the proof of (4.5.16). Let x ∈ MCC be fixed. In the proof
of Lemma 4.5.2(a) we made use of a local diffeomorphism Tx(x) leading to re-
lation (4.5.9). This transformation Tx is constructed depending on the active
index set Ia(x) := Irs(x) ∪ Ir(x) ∪ Is(x) ∪ J0(x), see (4.5.6). For any x near x
we have Ia(x) ⊂ Ia(x) and there are only finitely many choices for Ia namely
I1
a , . . . , I

R
a . So if we fix I i

a, I
i
a ⊂ Ia(x), any point x̂ near x with Ia(x̂) = I i

a yields
a local diffeomorphism Tx̂ which depends smoothly on x̂, see the construction
(4.5.6). So we find a common bound. There exist αi, εi > 0 such that for any
x ∈ MCC ∩ Bn

εi
(x), with Ia(x) = I i

a, there is a point xτ , xτ ∈ Mτ such that, for
all small τ

‖xτ − x‖ ≤ αi

√
τ .

Then, by choosing ε = min{εi | i = 1, . . . , R}, and α = max{αi | i = 1, . . . , R},
we have shown the relation (4.5.16).

2

Remark 4.5.3 Lemma 4.5.3 proves that the convergence in the Hausdorff dis-
tance

dH(Mτ ,MCC) := max{ max
xτ∈Mτ

d(xτ ,MCC) , max
x∈MCC

d(x,Mτ )}

between Mτ and MCC satisfies dH(Mτ ,MCC) = O(
√
τ).

The above convergence results for the feasible sets have been derived under
MPCC-LICQ. Example 4.5.3 shows that some constraint qualification is needed.
However the MPCC-LICQ condition can be slightly weakened. We show this on
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a simple special instance of a feasible set, defined by only one complementarity
constraint:

M1 =

x ∈ Rn

∣∣∣∣∣∣
r(x)s(x) = 0,

r(x) ≥ 0,
s(x) ≥ 0.


The corresponding perturbed feasible set is then

M1
τ =

x ∈ Rn

∣∣∣∣∣∣
r(x)s(x) = τ,

r(x) ≥ 0,
s(x) ≥ 0.


We say that MFCQ’ holds at x ∈ M1 if the common MFCQ condition holds at

x for M1
R =

{
x ∈ Rn

∣∣∣∣ r(x) ≥ 0,
s(x) ≥ 0

}
. Under this hypothesis we can prove the

following result.

Proposition 4.5.1 Let MFCQ’ hold at a point x ∈ M1. Then the following is
true:

(a) For any τ, τ > 0, small enough, there exists a point xτ , xτ ∈M1
τ such that

‖x− xτ‖ = O(
√
τ).

(b) There are some ε, τ0 > 0 such that for any xτ ∈ M1
τ ∩ Bn

ε (x),
0 < τ ≤ τ0, there exists xτ

0, x
τ
0 ∈M1, satisfying ‖xτ

0 − xτ‖ = O(
√
τ).

Proof . (a) Let x ∈ M1 be fixed. First we consider the case in which SC holds,
i.e., r(x) > 0, s(x) = 0 or s(x) > 0, r(x) = 0. Then the MFCQ’ condition means
∇s(x) 6= 0 or ∇r(x) 6= 0, respectively, i.e., MPCC-LICQ holds. So the proof is a
consequence of Lemma 4.5.2.

If r(x) = s(x) = 0, due to the MFCQ’ there is a vector ξ, ξ ∈ Rn such that:

ξT∇r(x) > 0, ξT∇s(x) > 0.

W.l.o.g. we assume ‖ξ‖ = 1. Note that there is some t0, t0 > 0, small enough
such that r(x+ tξ) > 0 and s(x+ tξ) > 0, for all t ≤ t0. Let r(x+ t0ξ)s(x+ t0ξ)
be equal to τ0. We will construct, for any τ , 0 < τ ≤ τ0, a point xτ = x + tτξ
such that xτ ∈M1

τ and tτ = O(
√
τ). Applying the Taylor expansion we find:

r(x+ tξ)s(x+ tξ) = ct2 + o(t2),

where c = (∇r(x)T ξ)(∇s(x)T ξ) > 0.
For any τ , 0 < τ < τ0, (τ0 chosen small), by the Mean Value Theorem, there

exists tτ , 0 ≤ tτ ≤ t0, such that r(x+ tτξ)s(x+ tτξ) = τ . As ct2τ + o(t2τ ) = τ , we
have tτ = O(

√
τ) and x+ tτξ ∈M1

τ .
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(b) W.l.o.g. we assume r(x) = 0, s(x) ≥ 0. If r(x) = 0 and s(x) > 0 then MFCQ’
implies MPCC-LICQ and the result is a consequence of Lemma 4.5.2.
If r(x) = s(x) = 0, the MFCQ’ condition implies ∇r(x) 6= 0 and ∇s(x) 6= 0.
We assume that ∇x1r(x) 6= 0 and ∇xj

s(x) 6= 0 (j may be equal to 1). Then,
we can choose ε > 0 such that for all x ∈ Bn

ε (x), |∇x1r(x)| > 1
Mr

> 0 and∣∣∇xj
s(x)

∣∣ > 1
Ms

> 0 hold for some Mr, Ms > 0. This means that 1
|∇x1r(x)| and

1
|∇xj s(x)| are bounded.

Now, we define the following diffeomorphisms, both similar to that used in
Lemma 4.5.2:

Tr : U → Vr, Tr(x) = (r(x), x2, . . . , xn) .

and
Ts : U → Vs, Ts(x) = (x1, . . . xj−1, s(x), xj+1, . . . , xn) .

Tr (Ts) defines a local C1-diffeomorphism from U to Vr (Vs respectively), where
U ⊂ Bn

ε (x) and Vr (Vs respectively) are open balls centered at x and (0, x2, . . . , xn)
((x1, . . . xj−1, 0, xj+1, . . . , xn) respectively).

Of course, for τ small enough, xτ ∈ U . We now take x̂r
τ = T−1

r (0, (x2, . . . , xn)τ ).
By construction, this point is in U and r(x̂r

τ ) = 0. Moreover,

‖x̂r
τ − xτ‖ = ‖T−1(0, (x2, . . . , xn)τ )− T−1(r(xτ ), (x2, . . . , xn)τ )‖

= O

(
‖
(
∇r(xτ )
0|In−1

)−1(
r(xτ )

0

)
‖

)
= O

(
| r(xτ )
∇x1r(xτ )

|
)

= O (|r(xτ )|) .

Analogously if we define the point x̂s
τ = ((x1, . . . xj−1)τ , 0, (xj+1, . . . , xn)τ ), we

find ‖x̂s
τ − xτ‖ = O (|s(xτ )|) and s(x̂s

τ ) = 0. But as r(xτ )s(xτ ) = τ , one of the
factors should be smaller that or equal to

√
τ . If r(xτ ) ≤

√
τ we put x̂τ = x̂r

τ

and if s(xτ ) ≤
√
τ , x̂τ = x̂s

τ . In both cases it holds that ‖x̂τ − xτ‖ ≤ O (
√
τ) and

r(x̂τ )s(x̂τ ) = 0. However, possibly r(x̂τ ) < 0 or s(x̂τ ) < 0 may occur. So, we

take xτ
0 = xτ + t∗d, where d = (x̂τ−xτ )

‖x̂τ−xτ‖ and

t∗ = min {t | r(xτ + td)s(xτ + td) = 0, t ≥ 0} .

Note that now xτ
0 ∈MCC . As

‖xτ
0 − xτ‖ = t∗ ≤ ‖x̂τ − xτ‖ ≤ O(

√
τ),

we have ‖xτ
0 − xτ‖ = O(

√
τ). So xτ

0 has the desired property. 2

Remark 4.5.4 This lemma presents a local convergence result. A global version
can also be proven by compactness arguments as in Lemma 4.5.3.
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4.5.3 Convergence results for minimizers

We now discuss the implications of the results so far. In this section x ∈ MCC

denotes a (candidate) minimizer of PCC and xτ a nearby solution of Pτ , τ > 0.
We begin with the following assumptions:

A1. There exists a solution x of PCC and a continuous function
α : [0,∞) → [0,∞), α(0) = 0 such that for any τ , small enough, τ > 0, we
can find a point xτ ∈Mτ satisfying

‖xτ − x‖ ≤ α(τ).

A2. There exists a continuous function β : [0,∞) → [0,∞), β(0) = 0 such that
for any τ , small enough, τ > 0, the following holds: we can find a solution xτ of
Pτ and a corresponding point x̂τ ∈MCC such that

‖x̂τ − xτ‖ ≤ β(τ).

As we shall see, A1 leads to the upper semi-continuity and A2 to the lower semi-
continuity of the value function ϕτ .

As f ∈ C1(X), due to the compactness of X, we can say that the function f
is Lipschitz continuous on X with Lipschitz constant L:

|f(x̂)− f(x)| ≤ L · ‖x̂− x‖ , ∀x̂, x ∈ X. (4.5.17)

Lemma 4.5.4 Let the assumptions A0 (see (4.5.4)), A1 and A2 hold and let
f ∈ C1(X). Then with the constant L in (4.5.17) it follows for all τ, τ > 0:

Lβ(τ) ≤ ϕτ − ϕ ≤ Lα(τ).

Proof. With the solution x of PCC and the points xτ in A1 we find, using the
Lipschitz condition (4.5.17),

ϕτ − ϕ ≤ f(xτ )− f(x) ≤ L α(τ)

and in the same way under A2,

ϕ− ϕτ ≤ f(x̂τ )− f(xτ ) ≤ L β(τ).

2

To obtain results on the rate of convergence for the solutions xτ of Pτ , we have
to assume some growth condition at a solution x of PCC .

A3. We assume x is a local minimizer of PCC of order ω, i.e., that x ∈ MCC

and for some κ, ε > 0 and ω = 1 or ω = 2 the following relation holds:

f(x)− f(x) ≥ κ‖x− x‖ω, ∀x ∈MCC ∩Bn
ε (x).

Sufficient and necessary conditions for this assumption are to be found in Sub-
section 4.4.2.
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Corollary 4.5.1 Let the assumptions f ∈ C1(X), A0, A1, A2 and A3 hold. Then
with the minimizers xτ of Pτ in A2 and with some c > 0 it follows that

‖xτ − x‖ ≤ c ·
(
α(τ) + β(τ)

)1/ω
.

Proof. With the points x, x̂τ ∈MCC and xτ , xτ ∈Mτ in A1, A2 we obtain

f(x) ≤ f(x̂τ ) ≤ f(xτ ) + L β(τ) ≤ f(xτ ) + L β(τ) ≤ f(x) + L α(τ) + L β(τ)

and thus
0 ≤ f(x̂τ )− f(x) ≤ L α(τ) + L β(τ). (4.5.18)

Again by taking the point x̂τ ∈MCC in A2 and using the condition A3, together
with (4.5.18), it follows that

‖xτ − x‖ ≤ ‖xτ − x̂τ‖+ ‖x̂τ − x‖

≤ β(τ) +

(
f(x̂τ )− f(x)

κ

)1/ω

≤ β(τ) +
1

κ1/ω
(Lα(τ) + Lβ(τ))1/ω ,

which proves the statement.
2

Corollary 4.5.2 Let A0 and MPCC-LICQ hold for MCC. Let x ∈ MCC be a
global (or local) minimizer of order ω = 1 or ω = 2 of PCC. Then for any τ,
small enough, τ > 0, there exists a global (or local) minimizer xτ of Pτ and for
(each of) these minimizers it follows that:

‖xτ − x‖ ≤ O(
√
τ

1/ω
)

or
‖xτ − x‖ ≤ O(τ 1/ω), if SC holds at x.

Proof. By Lemma 4.5.2, Mτ 6= ∅. Then, due to A0, the set Mτ is compact,
so Pτ has a global minimizer. Lemma 4.5.3 implies Conditions A1 and A2 with
α(τ) = O(

√
τ) and β(τ) = O(

√
τ). So, for the global minimizers, the inequality

directly follows by combining the results of Lemma 4.5.3 and Corollary 4.5.1.
For a local minimizer x we can restrict the feasible sets MCC and Mτ to a

closed neighborhood B
n

ε (x) (closed, to assure the existence of a minimizer xτ ).
Then the results hold for the (global) minimizer xτ in Mτ ∩ B

n

ε (x). But since
xτ → x for τ → 0, the points xτ are also in the open set Bn

ε (x), for τ small
enough, i.e., xτ are local minimizers.

2

Let us recall Example 4.5.4 with k = 2.
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Example 4.5.5 (cf. [47])

minx2
1 + x2,

s.t. x1 · x2 = 0,
x1, x2 ≥ 0

The minimizer x = (0, 0) is of order ω = 2 and it is a critical point satisfying
∇f(x) = 0∇r(x)+1∇s(x). So the MPCC-SC condition is not fulfilled. Here the

minimizers of Pτ read xτ =
((

τ
2

) 1
3 , (2τ 2)

1
3

)
.

The preceding example (see also [47]) shows that at a local minimizer x of or-
der two, even under MPCC-LICQ, the convergence rate for ‖xτ − x‖ can be
slower than O(

√
τ). Note, however, that this example is not a generic one

since the MPCC-SC condition does not hold. We will now show that in the
generic case this bad behavior is excluded. More precisely under the conditions
MPCC-LICQ, MPCC-SC and MPCC-SOC at a (local) minimizer x, we prove that
the minimizers xτ of Pτ are (locally) unique and the optimal convergence rate
‖xτ − x‖ = O(

√
τ) takes place.

Theorem 4.5.1 Let x be a local minimizer of PCC such that MPCC-LICQ,
MPCC-SC and MPCC-SOC hold. Then for any τ > 0, small enough, the local
minimizers xτ of Pτ (near x) are uniquely determined and satisfy
‖xτ − x‖ = O(

√
τ).

The same statement holds for the global minimizers x and xτ of P and Pτ , re-
spectively.

Proof. To prove this statement we again consider the problem Pτ in standard
form, see the problem given in (4.5.7),

Pτ : min f(x)

s.t. ĥi(x) = xi · xl+i = τ, i = 1, . . . , p,

ĥi(x) = xi+p · sp+i(x) = τ, i = 1, . . . , l − p,
gj(x) = xl+p+j ≥ 0, j = 1, . . . , q̂,

xi, xl+i ≥ 0, i = 1, . . . , p,
xi, si(x) ≥ 0, i = p+ 1, . . . , l.

(4.5.19)

where x = 0 is the local solution of P0 with sp+i(0) = csi > 0, i = 1, . . . , l − p.
Under MPCC-LICQ, the KKT condition for x reads:

∇f(x)−
p∑

i=1

(
ρiei + σiei+l

)
−

l∑
i=p+1

ρiei −
q̂∑

j=1

µjel+p+j = 0. (4.5.20)

with multiplier vector (µ, ρ, σ). Here ei denotes the canonical ith-canonical vector
of Rn. Due to the fulfillment of the MPCC-SC and MPCC-LICQ conditions at
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x, we have that µj, ρi, σi 6= 0, for all j = 1, . . . , q̂, i = 1, . . . , p. Moreover, as x
is a local minimizer these multipliers will be strictly positive. So, in (4.5.19) the
objective function f(x) has the form

f(x) =

p∑
i=1

(
ρixi + σixi+l

)
+

l∑
i=p+1

ρixp+i +

q̂∑
j=1

µjxl+p+j + q(x), (4.5.21)

where |q(x)| = O(‖x‖2). For convenience we now introduce the abbreviations:
ρ1 = (ρ1, . . . , ρp)

T , ρ2 = (ρp+1, . . . , ρl)
T , σ1 = (σ1, . . . , σp)

T , µ1 = (µ1, . . . , µq̂)
T ,

x1 = (x1, . . . , xp)
T , x2 = (xl+1, . . . , xl+p)

T , x3 = (xp+1, . . . , xl)
T ,

x4 = (xl+p+1, . . . , xl+p+q̂)
T x5 = (xl+p+q̂+1, . . . , xn)T and write x = ([x1]T , . . . , [x5]T ).

In this setting, the tangent space at x becomes

Tx = span {ei , i = l + p+ q̂ + 1, . . . , n},

recall that Tx = Cx, cf. (4.3.7). MPCC-SOC, together with the local minimizer
condition implies

∇2
xf(x) is positive definite on Tx or ∇2

x5f(x) = ∇2
x5q(x) � 0, (4.5.22)

and problem (4.5.19) reads

Pτ : min [ρ1]Tx1 + [σ1]Tx2 + [ρ2]Tx3 + [µ1]Tx3 + q(x)
s.t. x1

i · x2
i = τ, i = 1, . . . , p,

x3
i · sp+i(x) = τ, i = 1, . . . , l − p,

x4
j ≥ 0, j = 1, . . . , q̂.

(4.5.23)

Note that, by the condition µ1 > 0, near x all inequalities x4
j ≥ 0, j = 1, . . . , q̂

must be active.

As LICQ holds for x near to x = 0, the minimizers xτ of Pτ are solutions of
the following KKT system of (4.5.23) in the variables (x, λ, γ, ν):



ρ1 + ∇
x1q

σ1 + ∇
x2q

ρ2 + ∇
x3q

µ1 + ∇
x4q

∇
x5q


=



x2
1

. . .

x2
p

x1
1

. . .

x1
p

0 0 0
0 0 0
0 0 0



λ +



x3
1∇x1sp+1 .. x3

l−p∇x1sl

x3
1∇x2sp+1 .. x3

l−p∇x2sl

x3
1∇x3sp+1 + sp+1e1 .. x3

l−p∇x3sl + slel−p

x3
1∇x4sp+1 .. x3

l−p∇x4sl

x3
1∇x5sp+1 .. x3

l−p∇x5sl


γ +



0

0

0
ν
0



together with the constraints in (4.5.23). In this system the vectors e1, . . . , el−p

are unit vectors in Rl−p. For simplicity we omitted the variable x in the functions
q(x) and sp+1(x), . . . , sl(x).
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Now the trick is to eliminate the unknown λ and to simplify (regularize) the
equations x1

i · x2
i = τ as follows. We define:

ρ̂1(x, γ) := ρ1 +∇x1q − [x3
1∇x1sp+1 .. x

3
l−p∇x1sl]γ

σ̂1(x, γ) := σ1 +∇x2q − [x3
1∇x2sp+1 .. x

3
l−p∇x2sl]γ.

As ρ1, σ1 > 0 and |q(x)| = O(‖x‖2), near x = 0 we have ρ̂1 = ρ1+O(x)γ+O(‖x‖2)
and σ̂1 = σ1 + O(x)γ + O(‖x‖2). This means that both functions are strictly

positive in a neighborhood of (x, γ), where x = 0 and γi =
ρ2

i

sp+i(0)
, i = 1, . . . , l−p.

Recall that sp+i(0) > 0. So near this point the functions
√

ρ̂1

σ̂1 and
√

σ̂1

ρ̂1 are

C1-functions of (x, γ). From the system we deduce ρ̂1
i = x2

iλi, σ̂
1
i = x1

iλi. But

since x1
ix

2
i = τ it follows that ρ̂1

i σ̂
1
i = τλ2

i or λi =

√
ρ̂1

i σ̂1
i

τ
. So

x1
i =

√
σ̂1

i /ρ̂
1
i ·
√
τ and x2

i =
√
ρ̂1

i /σ̂
1
i ·
√
τ .

This means that the system above can be written equivalently as:

x1
i −

√
σ̂1

i /ρ̂
1
i ·
√
τ = 0,

x2
i −

√
ρ̂1

i /σ̂
1
i ·
√
τ = 0,[

x3
1∇x3sp+1 + sp+1e1 . . . x3

l−p∇x3sl + sp+1el−p

]
γ − ρ2 −∇x3q = 0,

(x3
1∇x5sp+1 . . . x

3
l−p∇x5sl)γ − ∇x5q = 0,

x3
i sp+i − τ = 0,
x4

i = 0,
(4.5.24)

and the system corresponding to the multiplier ν:

−(x3
1∇x5sp+1 . . . x

3
l−p∇x5sl)γ + µ1 +∇x4q = ν. (4.5.25)

The relation (4.5.24) represents a system F (x, γ, τ) = 0 of n+ l− p equations in
n+l−p+1 variables (x, γ, τ). The point (0, γ, 0), γ = (ρ2

1/sp+1(0), . . . , ρ
2
l−p/sl(0)),

solves system (4.5.24), recall that si(0) > 0, i = p+ 1, . . . , l. The Jacobian with
respect to (x, γ) at this point (0, γ, 0) has the form:

x1 x2 x3 x4 x5 γ
I 0 0 0 0 0
0 I 0 0 0 0

X X X X X

 sp+1

. . .

sl


0 0 X 0 ∇2

x5q 0

0 0

 sp+1

. . .

sl

 0 0 0

0 0 0 I 0 0

(4.5.26)
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where X is some matrix of appropriate dimension. Recall that ∇xiq(0) = 0. The
matrix in (4.5.26) is regular since si(0) > 0, i = p + 1, . . . , l and ∇2

x5q(0) � 0.
Then we can apply the Implicit Function Theorem to the system in (4.5.24). As
a consequence, near τ = 0 it yields a unique solution (x(τ), γ(τ)) differentiable
in the parameter

√
τ . This implies (x(τ), γ(τ)) = (x + O(

√
τ), γ + O(

√
τ)).

Substituting this solution (x(τ), γ(τ)) into the equation (4.5.25) the variable ν(τ)
is determined. Since the (local) minimizers xτ of Pτ (whose existence was shown
in Corollary 4.5.2) must solve the systems (4.5.24)-(4.5.25), clearly xτ = x(τ) is
uniquely determined. The unique multipliers w.r.t. Pτ are νi(τ) corresponding

to x4
i = 0, γi(τ) corresponding to x3

i sp+i(x) = τ and

√
ρ̂1

i σ̂1
i

τ
belonging to the

constraint x1
i · x2

i = τ . This proves the statement for the local minimizers.
If x is a global minimizer we can argue as in the second part of the proof of

Corollary 4.5.2. Firstly by restricting the minimization to a neighborhood B
n

δ (x)
the result follows as above. The compactness assumption for Mτ and the fact
that x is a global minimizer (of order ω = 2) exclude global minimizers xτ of Pτ

outside B
n

δ (x).
2

In the next Corollary we indicate that the result of Theorem 4.5.1 is also true
for C-stationary points satisfying the conditions MPCC-LICQ, MPCC-SC and
MPCC-SOC.

Corollary 4.5.3 Let x be a C-stationary point where MPCC-LICQ, MPCC-SC
and MPCC-SOC hold. Then for any τ > 0, small enough, there exists uniquely
determined critical points xτ of Pτ , converging to x according to
‖xτ − x‖ = O(

√
τ).

Proof . Note that since x is a C-stationary point and MPCC-SC holds, it follows
that ρi · σi > 0, i ∈ Irs(x) and µ > 0. The condition (4.5.22) will then be re-
placed by the fact that ∇2

x5
q(x) is non-singular. The rest follows as in the proof

of Theorem 4.5.1. 2

Remark 4.5.5 Note that the hypotheses used in Theorem 4.5.1 and Corollary
4.5.3 are generic, see Theorem 4.4.1.

Remark 4.5.6 The results above guarantee the existence of a sequence of local
minimizers (stationary points) of Pτ converging to the non-degenerate local min-
imizers (stationary points) of PCC. For computing this sequence numerically, the
constraints ri(x)si(x) = τ , and ri(x), si(x) ≥ 0 can be modeled equivalently with
a unique equality ψτ (ri(x), si(x)) = 0 where ψτ : R2 → R is a so-called parame-
terized NCP-function satisfying ψτ (x, y) = 0 ⇔ x, y ≥ 0 xy = τ , see e.g. Chen
and Mangasarian [9].
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Let us note that from the results of this part we also can deduce the convergence
results for the relaxation P≤

τ , see (4.5.2) and [47], under the stronger MPCC-LICQ
condition. Let us reconsider this relaxation P≤

τ . Suppose we have given a local
solution x of PCC such that MPCC-LICQ holds and, with corresponding Lagrange
multipliers, MPCC-SC, MPCC-SOC are satisfied, i.e., by Theorem 4.4.4, x is a
minimizer of order ω = 2. In view of Corollary 4.4.2, x is also a solution of the
relaxed problem PR(x) in (4.3.3) and by using MPCC-SC it follows that for any
τ > 0, small enough, for the solutions x̂τ (near x) of P≤τ (see Remark 4.5.1), the
conditions ri(x) si(x) ≤ τ , i ∈ Irs(x), are not active but that

ri(x̂τ ) = si(x̂τ ) = 0, ∀i ∈ Irs(x), (4.5.27)

holds. So, to analyze the behavior of the solution x̂τ the whole analysis can be
done under the condition (4.5.27), i.e., we are in the situation as for the case that
the SC condition holds. Consequently, instead of the convergence O(

√
τ) (cf.,

e.g. Lemma 4.5.2), we obtain a rate O(τ) and in the same way the analysis in
Section 4.5 simplifies resulting in a convergence behavior ‖x̂τ − x‖ = O(τ).

Remark 4.5.7 We wish to emphasize that the convergence results of this section
can be generalized in a straightforward way to problems Pm, m ≥ 3, containing
constraints of the product form:

r1(x)r2(x) · · · rm(x) = 0, r1(x), r2(x), . . . , rm(x) ≥ 0.

Here at a solution x of Pm where all constraints ri are active, i.e.,

r1(x) = r2(x) = . . . = rm(x) = 0,

a perturbation r1(x)r2(x) · · · rm(x) = τ will lead to a convergence rate

‖xτ − x‖ ≈ O(τ 1/m),

for the solutions xτ of the perturbed problem. Also all other results can be extended
in a straightforward way to this generalization.

4.6 JJT-regularity results for Pτ

In this section we are going to consider Pτ (see (4.5.1)) as a 1-parametric problem.
Using the JJT-regularity, we will proof that for a generic PCC (see (4.1.2)) with
(f, r1, . . . , rl, s1, . . . , sl, g1, . . . , gq) ∈ [C3]1+l+l+q

n , the one-parametric problem Pτ ,
is regular for τ ∈ (0, 1] in the sense of Definition 2.4.7.
We firstly deal with the LICQ condition. For this part we can weaken the differ-
entiability hypothesis and assume (r1, . . . , rl, s1, . . . , sl, g1, . . . , gq) ∈ [C2]l+l+q

n .
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Note that, for all x ∈ Mτ , τ > 0, the values of the functions ri(x), si(x)
are strictly positive. So the active index set is J0(x, τ) = {j | gj(x) = 0}. By
definition LICQ fails at a point x ∈Mτ , 0 < τ , if

l∑
i=1

[si(x)∇ri(x) + ri(x)∇si(x)]λi +
∑

j∈J0(x,τ)

µj∇gj(x) = 0, for some (λ, µ) 6= 0.

(4.6.1)

We define the set M0 = {(x, τ) | 0 < τ ≤ 1, x ∈Mτ such that (4.6.1) holds},
and M1 = {(x, τ) ∈M0 | (4.6.1) holds with µj 6= 0, ∀j ∈ J0(x, τ)}. Then the
following is true.

Proposition 4.6.1 Let (r1, . . . , rl, s1, . . . , sl, g1, . . . , gq) ∈ [C2]l+l+q
n be given. Then

for almost every linear perturbation of ri, gj, i = 1, . . . , l, j = 1, . . . , q, the set
M0 is a discrete set and M0 = M1.

The set of functions (r1, . . . , rl, s1, . . . , sl, g1, . . . , gq) ∈ [C2
S]l+l+q

n , see Definition
2.3.1, such that M0 is a discrete set and M0 = M1, is generic in [C2

S]l+l+q
n .

Proof . As gj, j = 1, . . . , q, are non-parametric functions, not depending on τ ,
from the standard genericity results we can conclude that for almost every linear
perturbation of gj, the vectors ∇gj(x), j ∈ J0(x, τ) are linearly independent
at all points (x, τ), x ∈ Mτ , 0 < τ ≤ 1. So, in the rest of the proof, we will
assume that the latter property holds. Now we will prove the statements of the
proposition for τ ∈ [ 1

k
, 1], where k ∈ N is fixed.

If LICQ is violated for Pτ then, by normalizing and possibly changing indices,
the following system is solvable:

∇r1(x)s1(x) +∇s1(x)r1(x) +
∑

j∈J0(x,τ)

∇gj(x)µj

+
l∑

i=2

λi(∇risi +∇siri)(x) = 0,

ri(x)si(x) = τ, i = 1, . . . , l,
gj(x) = 0, j ∈ J0(x, τ),
µj = 0, j ∈ JB ⊂ J0(x, τ).

(4.6.2)
For the perturbation (ri + bTi x+ ci), i = 1, . . . , l, the Jacobian of the system with
respect to (x, τ, λ, µ), λ = (λ2, . . . , λl)), and the parameters b1, c is of the form:
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∂x ∂τ ∂λ, µ ∂b1 ∂c

⊗
xx 0

⊗ s1 0 . . .

0
. . . 0

0 . . . s1

+∇s1 [x1, . . . , xn] ∇s1 |
⊗

⊗ −1
...
−1

 0 s1

[
x1, . . . , xn

0

] s1

. . .
sl


∇T gJ0(x,τ) 0 0 0 0

0 0 0 | I|JB | 0 0
(4.6.3)

The matrix :

(
diag(s1 . . . s1)n +∇s1 [x1, . . . , xn] ∇s1

s1(x)[x1, . . . , xn] s1(x)

)
is non-singular, since

s1(x) > 0 for τ ∈ [ 1
k
, 1]. Then the first n+1 rows in (4.6.3) are linearly indepen-

dent. So the matrix (4.6.3) has full row rank if and only if the following matrix
has also full row rank:

∂x ∂τ ∂λ, µ ∂b1 ∂c

⊗ −1
...
−1

 0 0

s2

. . .

sl


∇T

x gJ0(x,τ) 0 0 0 0
0 0 0 | I|JB | 0 0

But the latter is a direct consequence of the facts that si(x) > 0, ∀x ∈Mτ , τ > 0,
and the linear independence of ∇xgj(x), j ∈ J0(x, τ).
Applying the Parameterized Sard Lemma (cf. Lemma 2.3.1) it follows that for
almost every linear perturbation of ri, i = 1, . . . , l, the sub-matrix of (4.6.3) cor-
responding to ∂(x, τ, λ, µ) has full row rank at all solutions (x, τ, λ, µ) of (4.6.2),
τ ∈ [ 1

k
, 1]. So the number of rows, n+ l + |J0(x, t)|+ |JB|, must be smaller than

or equal to n + 1 + l − 1 + |J0(x, τ)|, the number of unknowns (x, τ, λ, µ). This
implies |JB| ≤ 0, i.e., µj 6= 0 for all j ∈ J0(x, τ). Consequently, the full row rank
condition for (4.6.3) implies that for almost all linear perturbations, the following
matrix is non-singular at all solutions (x, τ, λ, µ) of (4.6.2), τ ∈ [ 1

k
, 1]:

∂x ∂τ ∂λ, µ⊗
xx 0 ∇x(r2s2) . . .∇x(rlsl)∇T

x gJ0(x,τ)

∇x(r1s1)
T −1 0

... −1 0
∇x(rlsl)

T −1 0
∇xgJ0(x,τ) 0 0

(4.6.4)
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Here ⊗xx = ∇2
x (r1(x)s1(x)) +

l∑
i=2

λi∇2
x (ri(x)si(x)) +

∑
j∈J0(x,τ)

µj∇2
xgj(x).

So, as the number of equations and variables of the system (4.6.2) (now with-
out the equations µj 6= 0) are the same, it describes a 0-dimensional manifold,
i.e., the solution set is discrete.

The perturbation result for τ ∈ (0, 1] follows by taking k = 2, 3, . . . , and by
intersecting the corresponding sets of parameters.

Now we will prove the genericity statement for τ ∈ [ 1
k
, 1], where k ∈ N is

fixed.
The dense part follows directly from the above perturbation argument as in the
proof of Theorem 2.4.1, cf. Theorem 6.21 of [21].

For the open part, we assume that for the functions (r∗(x), s∗(x), g∗(x)) ∈
[C2

S]l+l+q
n the property of the proposition holds for all τ ∈ [ 1

k
, 1]. We have to

find a neighborhood Vε̂(x) of r∗(x), s∗(x), g∗(x), given by a continuous positive
function ε̂(x), where this property remains stable. (For simplicity we often skip
the variable x).
By Theorem 2.4.1, for the parametric problem, there is a neighborhood defined
by a function ε0(x, τ) such that for (ĥ0, r0, s0, g0) ∈ Vε0(x,τ)(r

∗s∗−τ, r∗, s∗, g∗), the
corresponding feasible set is regular, e.g., in the feasible set(x, τ) ∈ Rn × R

∣∣∣∣∣∣∣∣
g0j(x, τ) ≥ 0, j = 1, . . . , q,
r0i(x, τ) ≥ 0, i = 1, . . . , l,
s0i(x, τ) ≥ 0, i = 1, . . . , l,

ĥ0i(x, τ) = 0, i = 1, . . . , l


LICQ fails at most in a discrete set. Moreover, at the points (x, τ) where LICQ
fails we have:

for any non-trivial linear combination of the active constraints, the coefficients
corresponding to the active inequality constraints are no-zero.

(4.6.5)
In case of g.c. points of type 4 or 5, this property corresponds to the fulfillment
of condition (4b) and (5b) in Definition 2.4.5 and Definition 2.4.6 respectively.
As in the proof of Proposition 3.4.1, we define the continuous and positive function
ε(x) = min

τ∈[ 1
k
,1]
ε0(x, τ).

Now let the functions (ĥi, ri, si, gj) : Rn → R, i = 1, . . . , l, j = 1, . . . , q, be such

that |ri(x) − r∗i (x)| < ε(x), |si(x) − s∗i (x)| < ε(x), |ĥi(x) − r∗i (x)s
∗
i (x)| < ε(x),

|gj(x)− g∗j (x)| < ε(x) and the partial derivatives satisfy an analogous inequality.

It is clear that (ĥ− τ, r, s, g) ∈ Vε0(x,τ)(r
∗s∗− τ, r∗, s∗, g∗). So, by assumption, for
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all (ĥ− τ, r, s, g) ∈ Vε(x)(r
∗s∗, r∗, s∗, g∗), at the associated parametric set:(x, τ) ∈ Rn × R

∣∣∣∣∣∣∣∣
gj(x) ≥ 0, j = 1, . . . , q,
ri(x) ≥ 0, i = 1, . . . , l,
si(x) ≥ 0, i = 1, . . . , l,

ĥi(x)− τ = 0, i = 1, . . . , l


LICQ fails in at most a discrete set and condition (4.6.5) holds.

Now we will shrink the function ε(x) to obtain a neighborhood Vε̂(x) of (r∗, s∗, g)
such that (r, s, g) ∈ Vε̂(x) means (rs, r, s, g) ∈ Vε(x)(r

∗s∗, r∗, s∗, g∗). Let us consider
the C2

S-neighborhood defined by the function:

ε̂(x) = min

{
ε(x),

ε(x)

c0(x)

}
,

where

c0(x) = 4ε(x) +
l∑

i=1

[
|r∗i (x)|+ |s∗i (x)|+

n∑
j=1

[
|∂r∗i (x)

∂xj
|+ |∂s∗i (x)

∂xj
|
]]

+
l∑

i=1

n∑
j=1

n∑
k=j

[
|∂

2r∗i (x)

∂xj∂xk
|+ |∂

2s∗i (x)

∂xj∂xk
|
]
.

As ε̂(x) is the minimum of two continuous and positive functions, Vε̂(x) defines a
strong neighborhood.

If ri ∈ Vε̂(x)(r
∗
i ), then |ri(x) − r∗i (x)| < ε̂(x) ≤ ε(x). A similar relation holds

for the functions si and gi and their first and the second derivatives. Then,
ri(x) ∈ Vε(x)(r

∗
i ), si(x) ∈ Vε(x)(s

∗
i ), gj(x) ∈ Vε(x)(g

∗
j ) for i = 1, . . . , l, j = 1, . . . , q.

We now prove that if (ri, si) ∈ Vε̂(x)(r
∗
i )× Vε̂(x)(s

∗
i ), then ri(x)si(x) ∈ Vε(x)(r

∗
i s
∗
i ).

So, for all gj ∈ Vε(x)(g
∗
j ), ri ∈ Vε(x)(r

∗
i ), si ∈ Vε(x)(s

∗
i ), i = 1, . . . , l, j = 1, . . . , q,

the corresponding set Mτ will satisfy the properties of the proposition. First we
have:

|si(x)ri(x)− r∗i (x)s
∗
i (x)| ≤ |si(x)||ri(x)− r∗i (x)|+ |r∗i (x)||si(x)− s∗i (x)|

< ε̂(x) [|si(x)|+ |r∗i (x)|] .

But as |si(x)− s∗i (x)| < ε̂(x) ≤ ε(x), so |si(x)| ≤ ε(x) + |s∗i (x)| and

|si(x)ri(x)− r∗i (x)s
∗
i (x)| < ε̂(x) [ε(x) + |s∗i (x)|+ |r∗i (x)|]

≤ ε(x) [ε(x) + |s∗i (x)|+ |r∗i (x)|]
ε(x) + |r∗i (x)|+ |s∗i (x)|

≤ ε(x).
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For the first order derivatives ∂ = ∂
∂xj

, we find:

|∂(risi)− ∂(r∗i s
∗
i )| = |si∂ri + ri∂si − s∗i∂r

∗
i − r∗i ∂s

∗
i |

≤ |si∂ri − s∗i∂r
∗
i |+ |ri∂si − r∗i ∂s

∗
i |

≤ |si||∂ri − ∂r∗i |+ |∂r∗i ||si − s∗i |+
+|ri||∂si − r∗i ∂s

∗
i |+ |∂s∗i ||ri − r∗i |

≤ ε̂(x)[ε(x) + s∗] + |∂r∗i |ε̂(x) + ε̂(x)[r∗i + ε(x)] + |∂s|ε̂(x)
= ε̂(x)[|s∗i |+ |r∗i |+ |∂r∗i |+ |∂s∗i |+ 2ε] ≤ ε̂(x)c0(x).

Then, using ε̂(x) ≤ ε(x)
c0(x)

, we also obtain:

|∂(risi)− ∂(r∗i s
∗
i )| ≤ ε(x).

For the second derivatives we can similarly prove the inequality

|∂2(risi)− ∂2(r∗i s
∗
i )| ≤ ε(x).

Then for all functions (r, s, g) ∈ Vε̂(x), it holds that (rs, r, s, g) ∈ Vε(x)(r
∗s∗, r∗, s∗, g∗)

which proves the open part.

Together with the density we have shown the genericity result for τ ∈ [ 1
k
, 1].

Now taking the intersection of the corresponding open and dense sets in [C2
S]l+l+q

n

for k = 2, 3, . . ., we see that generically M0 is a discrete set and M0 = M1.
2

Remark 4.6.1 Note that, as a consequence of the Parameterized Sard Lemma,
it also holds that for almost every linear perturbation of (r, g) the matrix (4.6.4)
is non-singular for all solutions (x, τ, λ, µ) of system (4.6.1)

Remark 4.6.2 A similar result can be proven if instead of C2
S, we consider C3

S.
The only difference is that in the open part of the proof the function ε̂(x) will be
smaller in order to assure | ∂3

∂xk1
,xk2

,xk3
risi(x) − ∂3

∂xk1
,xk2

,xk3
r∗i s

∗
i (x)| < ε̂(x) for all

i = 1, . . . , l, k1, k2, k3 = 1, . . . , n.

Proposition 4.6.2 Let (f, r1, . . . , rl, s1, . . . , sl, g1, . . . , gq) ∈ [C3
S]1+l+l+q

n , be fixed.
Then for almost every perturbation, linear in (r1, . . . , rl, s1, . . . , sl, g1, . . . , gq) and
quadratic in f , the corresponding parametric problem Pτ , τ ∈ (0, 1] is regular on
(0, 1], see Definition 2.4.7.
In particular, the set of functions (f, r1, . . . , rl, s1, . . . , sl, g1, . . . , gq) ∈ F|(0,1], is
generic in [C3

S]1+l+l+q
n .

Proof . By Proposition 4.6.1 and Remark 4.6.1, for almost all linear perturbation
of (r1, . . . , rl, g1, . . . , gq), LICQ is not fulfilled only in a discrete set (i.e., M0 is
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a discrete set) M0 = M1 and the matrix (4.6.4) is non-singular at all solutions
(x, τ, λ, µ) of system (4.6.1) with (x, τ) ∈M0. Let us fix an arbitrary linear per-
turbation (Cr, dr, Cg, dg) ∈ Rln+l+qn+q of the constraints satisfying the previous
statements and denote the associated (perturbed) functions by (r̂, ŝ, ĝ). Now the
corresponding feasible set Mτ is fixed and we again consider the two cases: the
generalized critical points (x, τ) where the LICQ condition holds and where it
fails.

We now can show that, for almost every quadratic perturbation f̂ of f(x),

given by (A, b) ∈ R
n(n+1)

2
+n, the generalized critical points of Pτ , τ ∈ [ 1

k
, 1]

(corresponding to (f̂ , r̂, ŝ, ĝ)) where LICQ holds are of type 1, 2 or 3. This can
be done following the lines of the proof of Theorem 2.4.1 (see Theorem 6.18 of
[21]).

Now we consider the case where LICQ fails. Let (x, τ) be an arbitrarily fixed
point where LICQ fails, i.e., (x, τ) ∈ M0. Note that such a point is a g.c.
point. As can be derived using the proof of Theorem 2.4.1 (see Theorem 6.18,
[21]) (x, τ) is a g.c. point of type 4 or 5 of the perturbed problem, for almost

all quadratic perturbations f̂ of f(x) given by (A, b) ∈ R
n(n+1)

2
+n. As M0 has

only a discrete number of elements, if we intersect for all (x, τ) ∈ M0 the sets
of parameters (A, b) such that, for the corresponding perturbed problem, (x, τ)
is a g.c. point of type 4 or 5, we obtain that, for almost all quadratic pertur-
bations of f(x), all points where LICQ fails are g.c. points of type 4 or 5. If
we intersect this set of parameters (A, b) with the set of (A, b) such that the g.c.
points satisfying LICQ are of type 1, 2 or 3, we have proven that for almost
all arbitrarily fixed (Cr, dr, Cg, dg), for almost every (A, b) the g.c. points of the
corresponding perturbed problem Pτ are of type 1, 2, 3, 4 or 5. Now the first state-
ment of the Proposition is a direct consequence of the Fubini theorem in the set

Rln+l+qn+q × R
n(n+1)

2
+n.

For the genericity result, we have to show that the set of functions
(f, r1, . . . , rl, s1, . . . , sl, g1, . . . , gq) ∈ [C3

S]1+l+l+q
n such that the corresponding prob-

lem Pτ , is JJT -regular on [ 1
k
, 1], is open and dense in [C3

S]1+l+l+q
n .

The open part is proved in the same way as in the proof of Proposition 4.6.1 and
the density is obtained as in the classical case by using partitions of unity. 2

Remark 4.6.3 By using ideas similar to those of the proof of Theorem 4.5.1
it can be seen that if PCC is regular in the MPCC-sense then, for all (xτ , τ)
satisfying (xτ , τ) ∈ Σgc and xτ → x ∈ MCC , when τ → 0+, it follows that for
τ � 1, (xτ , τ) is a non-degenerate critical point.

The previous results enable us to apply a pathfollowing algorithm for solving
Pτ , τ → 0, because, at least locally, a program like PAFO, by Gollmer, Kaus-
mann, Nowack, Wendler and Bacallao [18], will be able to perform a continuation
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proces on the set of g.c. points around points of type 1 and to handle the singu-
larities in the generic case for τ ∈ (0, 1].

4.7 Parametric problem

In this section, we consider one-parametric Mathematical Programs with Com-
plementarity Constraints

PCC(t) : min f(x, t)
s.t. x ∈MCC(t)

(4.7.1)

MCC(t) =

x ∈ Rn

∣∣∣∣∣∣∣∣∣∣
hk(x, t) = 0, k = 1, . . . , q0,
gj(x, t) ≥ 0, j = 1, . . . , q,
ri(x, t) ≥ 0, i = 1, . . . , l,
si(x, t) ≥ 0, i = 1, . . . , l,

ri(x, t)si(x, t) = 0, i = 1, . . . , l.


t ∈ R. For simplicity we again use the abbreviations h = (h1, h2, . . . , hq0),
g = (g1, g2, . . . , gq), r = (r1, r2, . . . , rl) and s = (s1, s2, . . . , sl) and assume at

least (f, h, g, r, s) ∈ [C2]1+q0+q+l+l
n+1 .

The section has two parts. We begin with a brief study of the feasibility problem
find x ∈ MCC(t), t ∈ [0, 1], when n = l, q = q0 = 0. The non-parametric case is
also considered.
In the second subsection, the local behavior of the solution set of general problems
PCC(t) is analyzed under generical assumptions. We also describe the singulari-
ties that may appear in the generic case.

4.7.1 Structure for the special case n = l, q = q0 = 0

Let us consider the problem:

for each t, find x such that x ∈MCC(t) (4.7.2)

where

MCC(t) =

x ∈ Rn

∣∣∣∣∣∣
ri(x, t) ≥ 0, i = 1, . . . , n,
si(x, t) ≥ 0, i = 1, . . . , n,

ri(x, t)si(x, t) = 0, i = 1, . . . , n.


A particular case is the so-called 1-parametric nonlinear complementarity prob-
lems (NLCP) (for the non-parametric case see (3.4.4)):

for each t find x ∈ Rn such that


x ≥ 0,

Φ(x, t) ≥ 0,
Φ(x, t)Tx = 0,

(4.7.3)
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where Φ ∈ [C3]nn+1. Problem (4.7.3) can also be seen as the 1-parametric V I
problem V IP (t; Φ(x, t),Rn

+), see (3.2.1).

For the present case, n = l, q = q0 = 0, we will prove that, generically,
the set {(x, t) | x ∈ MCC(t)} may locally be described by a curve (x(t), t), or
may bifurcate into two branches or may have quadratic turning points. In the
non-parametric case we show that generically MCC is a discrete set.

As ri(x, t)si(x, t) = 0 must hold at feasible points, at least one of the functions
ri(x, t) or si(x, t) is equal to 0. So, to simplify the presentation we will often
assume, w.l.o.g., that at a feasible point (x, t), the condition r(x, t) = 0, s(x, t) ≥ 0
holds. As usual, we define the active index set as:

Ir(x, t) = {i | ri(x, t) = 0, si(x, t) > 0} ,
Is(x, t) = {i | si(x, t) = 0, ri(x, t) > 0} ,
Irs(x, t) = {i | ri(x, t) = si(x, t) = 0} .

(4.7.4)

The non-parametric case.

In this part we study the non-parametric version of problem (4.7.2):

Find x ∈ S0, (4.7.5)

S0 =

x ∈ Rn

∣∣∣∣∣∣
ri(x)si(x) = 0, i = 1, . . . , n,

ri(x) ≥ 0, i = 1, . . . , n,
si(x) ≥ 0, i = 1, . . . , n.


The following genericity result holds for (r, s) ∈ [C∞]n+n

n .

Proposition 4.7.1 Generically, with respect to the [C2
S]-topology on [C∞]n+n

n ,
the functions (r, s) define a set S0 which is a 0-dimensional manifold, i.e., it is
a discrete set. Besides, generically, at each x ∈ S0 it follows Irs(x) = ∅ and
[∇rIr(x)(x),∇sIs(x)(x)] is a regular matrix.

Proof . By definition, at all feasible points, at least n constraints are equal to zero.
W.l.o.g., and possibly after changing the roles of ri and si, we assume r(x) = 0 and
s1(x) = s2(x) = . . . sl0(x) = 0, 0 ≤ l0 ≤ n. The result now is a direct consequence
of the Jet Transversality Theorem, Theorem 2.3.1, applied to the functions (r, s)
with respect to the jet-manifold {(x, z, u) ∈ Rn+n+n | r(x)− z = 0, s(x)− u = 0}
and the manifold Rn × 0n+l0 × Rn−l0 .

2
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The one-parametric case.

Now we turn back to problem (4.7.2) in order to study the structure of the set

M =

(x, t) ∈ Rn × R

∣∣∣∣∣∣
ri(x, t)si(x, t) = 0, i = 1, . . . , n,

ri(x, t) ≥ 0, i = 1, . . . , n,
si(x, t) ≥ 0, i = 1, . . . , n


We will always assume (r, s) ∈ [C∞]n+n

n+1 . Firstly, we will discuss the different
generic types of solution points (x, t) that may appear using first order informa-
tion.

Proposition 4.7.2 Generically, with respect to the [C2
S]-topology on [C∞]n+n

n+1 ,
the corresponding set M is such that if (x, t) ∈ M, then one of the following
three conditions is fulfilled:

(a) Irs(x, t) = ∅ and ∇x[rIr(x,t)(x, t), sIs(x,t)(x, t)] is non-singular. Then locally
around (x, t), M is defined by a curve (x(t), t), x(t) = x, t ∈ [t− ε, t+ ε],
for some ε, ε > 0.

(b) Irs(x, t) = ∅, ∇x[rIr(x,t)(x, t), sIs(x,t)(x, t)] has rank n − 1 and the matrix
∇(x,t)[rIr(x,t)(x, t), sIs(x,t)(x, t)] has rank n.

(c) Irs(x, t) is a singleton, i.e., Irs(x, t) = {i∗}, and the matrix
∇(x,t)

[
rIr(x,t)(x, t), sIs(x,t)(x, t), ri∗(x, t), si∗(x, t)

]
is non-singular.

Proof . Let the sets Ir(x, t), Irs(x, t), Is(x, t) be fixed. We will assume,
w.l.o.g., that Is(x, t) = ∅ and Irs(x, t) = {1, . . . , l0}, i.e., r(x, t) = 0 and
s1(x, t) = . . . = sl0(x, t) = 0. By the Jet Transversality Theorem, cf. Theorem
2.3.1, generically in (r, s), the jet manifold (x, t, r(x, t), s(x, t)) and the manifold
Rn × R× 0n+l0 × Rn−l0 intersect transversally.
In other words, if we define

M1 =

{
y = (x, t, z, u) ∈ Rn+1+n+n

∣∣∣∣ r(x, t)− z = 0,
s(x, t)− u = 0

}
and

M2 =

{
y = (x, t, z, u) ∈ Rn+1+n+n

∣∣∣∣ z = 0,
ui = 0, i = 1, . . . , l0

}
then at all y ∈ M1 ∩M2, the gradients of the functions defining M1 and M2 are
linearly independent. This means that, the following matrix has full row rank at
all y ∈M1 ∩M2,

∂x ∂t ∂z ∂u
∇xr ∇tr −In 0
∇xs ∇ts 0 −In
0 0 In 0
0 0 0 Il0|0
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Then, the number of columns (n+ 1 + 2n) must be greater than or equal to the
number of rows 2n + n + l0, i.e., l0 ≤ 1. So, if l0 = 0, due to the rank con-
ditions, ∇(x,t)r(x, t) has rank n. In this case either ∇xr(x, t) is non-singular or
∇xr(x, t) has rank n − 1, corresponding to conditions (a) and (b). If l0 = 1 the
non-singularity of ∇(x,t)

[
rIr(x,t)(x, t), ri∗(x, t), si∗(x, t)

]
follows from the rank con-

dition. The result is now a consequence of intersecting the generic sets resulting
for all finitely many possible combinations of Ir(x, t), Irs(x, t), Is(x, t).

2

Remark 4.7.1 If we consider the 1-parametric NLCP, see (4.7.3), as the vari-
ational inequality problem V I(t; Φ(x, t),Rn

+), the generic possibilities of Propo-
sition 4.7.2 can be identified with the following cases of 1-parametric V I g.c.
points, see Definition 3.2.2 and [19]:
Points satisfying (a) are non-degenerate critical points of V I(t; Φ(x, t),Rn

+).
Case (b) corresponds to points where the condition V I-1c in Definition 3.2.2 is vi-
olated. Finally for points satisfying (c) the condition V I-1b, see Definition 3.2.2,
fails.

Now we will specify the conditions given in Proposition 4.7.2 (b) and (c) and
define generic singularities in order to determine the local behavior of M. In
the case of NLCP, these singularities will coincide with those described for the
1-parametric problem V I in Section 3.3.

For a point (x, t) ∈M of type V I-2 we need the fulfilment of condition (c) of
Proposition 4.7.2 and the regularity of the matrices :

[∇xrIr(x,t)(x, t), ∇xsIs(x,t)(x, t),∇xri∗(x, t)]

[∇xrIr(x,t)(x, t), ∇xsIs(x,t)(x, t),∇xsi∗(x, t)].
(4.7.6)

Proposition 4.7.3 Generically, with respect to the [C3
S]-topology on [C∞]n+n

n+1 ,
the matrices given in (4.7.6) are regular at the points (x, t) satisfying (c) in
Proposition 4.7.2.

Under these assumptions, for the case Irs(x, t) = {i∗}, the set M bifur-
cates into two branches: one corresponding to the solutions of rIr(x,t)(x, t) = 0,
sIs(x,t)(x, t) = 0, ri∗(x, t) = 0, si∗(x, t) ≥ 0 and the other given by rIr(x,t)(x, t) = 0,
sIs(x,t)(x, t) = 0, si∗(x, t) = 0, ri∗(x, t) ≥ 0.

Proof . Let (x, t) ∈M satisfy the condition given in Proposition 4.7.2-c. W.l.o.g.,
we assume Is(x, t) = ∅ and Irs(x, t) = {1}. First note that ∇xr(x, t) will be
singular if and only if, up to some permutations of columns and rows, the following
relation holds for some n0 > 0:

ra = rcr
−1
d rb,
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where ∇xr is decomposed as ∇xr =

(
ra rc

rb rd

)
, rank(∇xr) = rank(rd) and

ra ∈ Rn0×n0 .
Now we fix a possible decomposition and consider the manifold

M2 =

y = (x, t, z, u, z1, u1) ∈ Rn+1+n+1+n(n+1)+(n+1)

∣∣∣∣∣∣
z = 0,
u = 0,

z1
a − z1

c [z1
d]−1z1

b = 0


and the jet manifold

M1 =

y = (x, t, z, u, z1, u1) ∈ Rn+1+n+1+n(n+1)+(n+1)

∣∣∣∣∣∣∣∣
r(x, t)− z = 0,

s1(x, t)− u = 0,
∇(x,t)r(x, t)− z1 = 0,

∇(x,t)s1(x, t)− u1 = 0


in the corresponding jet space. Here z1 =

(
z1

a z1
c z1

e

z1
b z1

d z1
f

)
, the sub-matrix

(
z1

a z1
c

z1
b z1

d

)
corresponds to∇xr(x, t) and the vector

(
z1

e

z1
f

)
to∇tr(x, t). Using the Jet Transver-

sality Theorem, Theorem 2.3.1, generically in (r, s), it follows M1 t M2. This
means that the following matrix has generically full row rank at y ∈M1 ∩M2.

∂x ∂t ∂z ∂u ∂z1 ∂u1

∇xr ∇tr −In 0 0 0
∇xs1 ∇ts1 0 −1 0 0
∇2

xr
∇t∇xr

∇t∇xr
∇2

t r
0 0 −In(n+1) 0

∇2
xs1

∇t∇xs1

∇t∇xs1

∇2
t s1

0 0 0 −In+1

0 0 In 0 0 0
0 0 0 1 0 0
0 0 0 0 In2

0
|
⊗

0

This implies that the number of columns is greater than or equal to the number
of rows, i.e., n+ 1 + n+ 1 + (n+ 1)(n+ 1) ≥ n+ 1 + (n+ 1)(n+ 1) + n+ 1 + n2

0.
So n0 = 0 or, equivalently, ∇xr has full rank. Taking all possible decompositions
of ∇xr, it follows that, generically, ∇xr(x, t) is regular as desired. Analogously,
generically the matrix (∇xr2(x, t), . . . ,∇xrn(x, t)∇xs1(x, t)) is also regular.

We have proven that, generically, the matrices given in (4.7.6) are non-singular
for (x, t) ∈ M satisfying (c) in Proposition 4.7.2. Under this regularity condi-
tion, we can guarantee the existence of curves (x1(t), t) and (x2(t), t) satisfying
r(x1(t), t) = 0, t ∈ [t − ε, t + ε], ri(x2(t), t) = 0, i = 2, . . . , n, s1(x2(t), t) = 0,
t ∈ [t− ε, t+ ε] and x1(t) = x2(t) = x for some ε > 0.
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The relation r(x1(t), t) = 0 implies∇xrẋ1+∇tr = 0. Since the matrix∇(x,t)(r, s1)
is non-singular, it must follow that ∇xs1ẋ1 + ∇ts1 6= 0. This means that
around t, s1(x1(t), t) is either an increasing or a decreasing function of t. In
any case, by moving along the curve, in which r(x1(t), t) = 0 holds, one and
only one of the branches, either for t ≥ t or t ≤ t, will be (locally) feasible with
s1(x1(t), t) ≥ 0. A similar situation occurs if we consider the curve (x2(t), t) given
by s1(x2(t), t) = 0, ri(x2(t), t) = 0, i = 2, . . . , n.

2

In the case of points (x, t) of type V I-3, see Section 3.3, higher order conditions
should be added to condition (b) in Proposition 4.7.2. We give the following
result without proof. For the proof, which can be done along the lines of the
proof of Proposition 4.7.3, a 2-jet manifold will also be required.

Proposition 4.7.4 Generically in [C3
S]n+n

n+1 , the points (x, t) ∈ M, where condi-
tion (b) in Proposition 4.7.2, holds are non-degenerate critical points of:

min t
s.t. rIr(x,t)(x, t) = 0,

sIs(x,t)(x, t) = 0.

At points (x, t) where the conditions of the previous proposition hold, the set M
has a turning point.
Concluding, we have obtained the generic types of solution points for problem
(4.7.2). In the case of NLCP, these types coincide with the singular points defined
in [19] for one-parametric V I.

4.7.2 One parametric PCC

In this section we extend the concepts and regularity results of standard 1-
parametric finite problems (2.2.1) to 1-parametric mathematical programs with
complementarity constraints. We will also present the singularities that may ap-
pear generically at g.c. points.
Let us consider the parametric problem PCC(t), t ∈ R, where

PCC(t) : min f(x, t)
s.t. x ∈MCC(t)

(4.7.7)

MCC(t) =

x ∈ Rn

∣∣∣∣∣∣∣∣∣∣
hk(x, t) = 0, k = 1, . . . , q0,
gj(x, t) ≥ 0, j = 1, . . . , q,
ri(x, t) ≥ 0, i = 1, . . . , l,
si(x, t) ≥ 0, i = 1, . . . , l,

ri(x, t)si(x, t) = 0, i = 1, . . . , l.


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These problems have been studied in [24] from a local viewpoint. The continuity
and differentiability of the value function with respect to the parameters was an-
alyzed around a non-degenerate stationary point. Here we will study the generic
behavior of the whole set of solution points.

To cover all possible singularities, we analyze the problem with additional
equality constraints. As in the non-parametric case, the active index sets are:

J0(x, t) =
{
j | gj(x, t) = 0

}
,

Ir(x, t) =
{
i | ri(x, t) = 0, si(x, t) > 0

}
,

Is(x, t) =
{
i | si(x, t) = 0, ri(x, t) > 0

}
,

Irs(x, t) =
{
i | ri(x, t) = si(x, t) = 0

}
.

The definitions of the Lagrange function, multipliers, stationarity, MPCC-SC and
MPCC-SOC can also be easily extended from the non-parametric (see Section
4.3) to the parametric case.

Definition 4.7.1 Let

L(x, t, λ0, λ, γ, µ, ρ, σ) =
λ0f(x, t)−

q0∑
k=1

λkhk(x, t)−
∑

i∈Irs(x,t)

(ρiri(x, t) + σisi(x, t))

−
∑

j∈J0(x,t)

µjgj(x, t)−
∑

i∈Ir(x,t)

ρiri(x, t)−
∑

i∈Is(x,t)

σisi(x, t)

be the Lagrange function. Then for problem PCC(t):

- MPCC-LICQ (MPCC-MFCQ) holds at (x, t) if it is satisfied at x ∈MCC(t).

- (x, t) is a Fritz John, (weakly, C-, M-, A-, B-, strongly) stationary point
if x is a Fritz John, (weakly, C-, M-, A-, B-, strongly) stationary point of
problem PCC(t). The set of strongly stationary points will be denoted as
Σstat.

- MPCC-SC(SOC) holds at (x, t) if MPCC-SC(SOC) holds at x for problem
PCC(t).

As already done in (4.3.3), we will define the relaxed problem corresponding to
PCC(t) at a feasible point (x, t)

P
(x,t)
R (t) : min f(x, t)

s.t x ∈M(x,t)
R (t)

(4.7.8)

M(x,t)
R (t) =

x ∈ Rn

∣∣∣∣∣∣∣∣∣∣
hk(x, t) = 0, k = 1, . . . , q0,
gj(x, t) ≥ 0, j = 1, . . . , q,

ri(x, t) = 0, si(x, t) ≥ 0, i ∈ Ir(x, t),
si(x, t) = 0 ri(x, t) ≥ 0, i ∈ Is(x, t),
ri(x, t) ≥ 0, si(x, t) ≥ 0, i ∈ Irs(x, t).


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The next lemma establishes the relationship between M(x,t)
R (t) and the set of

feasible solutions of the original problem.

Lemma 4.7.1 Let x ∈ MCC(t) be given. Then there is a neighborhood

Vx × Vt of (x, t) such that for all t ∈ Vt, it follows that Vx ∩MCC(t) ⊂M(x,t)
R (t).

Moreover, if t ∈ Vt and x ∈ Vx ∩MCC(t), then Irs(x, t) ⊂ Irs(x, t).

Proof . By continuity, there is a neighborhood V0 = Vx × Vt of (x, t) such that
(x, t) ∈ V0 implies si(x, t) > 0, i ∈ Ir(x, t) and ri(x, t) > 0, i ∈ Is(x, t). If
(x, t) ∈ V0 and x ∈ MCC(t) then ri(x, t) = 0, i ∈ Ir(x, t) and si(x, t) = 0,
i ∈ Is(x, t) while for i ∈ Irs(x, t), ri(x, t)si(x, t) = 0, ri(x, t), si(x, t) ≥ 0.

This means x ∈ M(x,t)
R (t), the feasible set of the parametric relaxed problem

P
(x,t)
R (t). As a direct consequence Irs(x, t) ⊂ Irs(x, t) for all (x, t) such that t ∈ Vt,
x ∈MCC(t) ∩ Vx.

2

As usual, instead of studying the structure of the set of local minimizers or sta-
tionary points of PCC(t), it is more natural to analyze the larger set of generalized
critical points.

Definition 4.7.2 We say that (x, t) is a generalized critical point of PCC(t), i.e.,
(x, t) ∈ Σgc(PCC(t)), if x ∈ MCC(t) and ∇xf(x, t),∇xh1(x, t), . . . ,∇xhq0(x, t),
∇xgJ0(x,t)(x, t), ∇xrIr(x,t)(x, t), ∇xrIrs(x,t)(x, t),∇xsIrs(x,t)(x, t),∇xsIs(x,t)(x, t) are
linearly dependent.
It is a critical point (i.e. (x, t) ∈ Σcrit(PCC(t))) if in addition MPCC-LICQ
holds.
Let (1, λ, µ, σ, ρ) be a vector of multipliers associated to a g.c. point (x, t), i.e.,
∇xL(x, t, 1, λ, µ, σ, ρ) = 0. We will say that MPCC-SC holds if µj 6= 0,
∀j ∈ J0(x, t) and σi, ρi 6= 0, ∀i ∈ Irs(x, t).

From the definition it directly follows that (x, t) is a generalized critical point
(respectively a critical point) of PCC(t) if and only if it is a g.c point (respectively

a critical point) of P
(x,t)
R (t). Together with Lemma 4.7.1 we will see that, even

more, locally around (x, t) any g.c. point of PCC(t) is an element of Σgc(P
(x,t)
R (t)).

Lemma 4.7.2 If (x, t) ∈ Σgc(PCC(t)), then around this point

Σgc(PCC(t)) ⊂ Σgc(P
(x,t)
R (t)).

Moreover, locally, Σgc(PCC(t)) = Σgc(P
(x,t)
R (t))∩{(x, t) ∈ Rn×R | x ∈MCC(t)}.

Proof . It is a direct consequence of the definitions and Lemma 4.7.1. 2

These facts enable us to reduce locally the whole genericity analysis for PCC(t)

to the analysis of the relaxed problems P
(x,t)
R (t).
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Lemma 4.7.3 The set of functions (f, h, g, r, s) ∈ [C3
S]1+q0+q+2l

n+1 such that for all

possible choices of Ir(x, t), Is(x, t), Irs(x, t), the associated problems P
(x,t)
R (t) are

JJT-regular, contains an open and dense subset of [C3
S]1+q0+q+2l

n+1 .

Proof . We apply the same idea as in the proof of Theorem 4.4.1. For a fixed

triplet Ir, Is, Irs, the associated relaxed problem P
(x,t)
R (t) is a common parametric

nonlinear program. Using the classical JJT-theorem, see Theorem 2.4.1, P
(x,t)
R (t)

is JJT-regular for an open and dense set S(Ir, Is, Irs) of functions
(f, h, g, r, s) ∈ [C3

S]1+q0+q+2l
n+1 .

Now we consider all the finitely many possible combinations of Ir, Is, Irs and de-
fine the intersection S =

⋂
S(Ir, Is, Irs). As S is a finite intersection of open and

dense sets, it is an open and dense set, and the elements in S have the desired
properties.

2

We have proven that generically the generalized critical points of P
(x,t)
R (t) are of

type 1, 2, 3, 4 or 5. In view of Definition 4.7.2 and Lemma 4.7.3 we can introduce
the different types of g.c. points of PCC(t).

Definition 4.7.3 A g.c. point (x, t) of problem PCC(t) is of type i, i = 1, 2, . . . , 5,

if it is a g.c. point of type i for the corresponding problem P
(x,t)
R (t).

A problem PCC(t) is called MPCC-regular if all its generalized critical points are
of type 1, . . . , 5.

As in the general case, the singular points of type i = 2, . . . , 5 are isolated sin-
gularities. The following result is a direct consequence of the previous definition,
Lemma 4.7.2 and Lemma 4.7.3.

Theorem 4.7.1 The set of functions (f, h, g, r, s) ∈ [C3
S]1+q0+q+2l

n+1 such that PCC(t)

is MPCC-regular contains an open and dense subset of [C3
S]1+q0+q+2l

n+1 .

In the following we describe the behavior of the set Σgc(PCC(t)) around any of
the 5 types of g.c. points in detail. We will see that, locally, Σgc(PCC(t)) can be
written as the union of the set of g.c. points of certain relaxed problems. We will

always consider (x, t) as an element of Σgc(P
(x,t)
R (t)), even if eventually it can be

considered as a g.c. point of some other relaxed problem. Note that for MPCC-
problems the active index sets do not change in the same way as for nonlinear
programs without complementarity constraints. In fact, the active index sets
Ir, Irs, Is should always form a partition of {1, . . . , l}. Of course, J0(x, t) may
change freely.

For the analysis of the behavior of the set of g.c. points, we again intro-
duce the so-called linear and quadratic indexes. For a g.c. point (x, t) of PCC(t)
we define the indices LI, (LNI), as the number of positive (negative) multipliers

89



µj, σi, ρi, j ∈ J0(x, t), i ∈ Irs(x, t) of the Lagrangean function associated with
gj, j ∈ J0(x, t), ri, si, i ∈ Irs(x, t). The quadratic indices QI, (QNI), repre-
sent the number of positive (negative) eigenvalues of the corresponding matrix
∇2

xL|TxM
(x,t)
R (t)

. Evidently, if (x, t) is a strongly stationary point then LNI=0 must

hold and at a local minimizer where MPCC-LICQ holds, LNI=QNI=0. Changes
in these indexes imply leaving or entering the set of local minimizers and/or the
set of stationary points.

G.C. points of type 1. If (x, t) ∈ Σ1
gc(PCC(t)), i.e., (x, t) ∈ Σ1

gc(P
(x,t)
R (t)),

the set of active indexes will not change locally in Σ1
gc(P

(x,t)
R (t)). So around

(x, t), Σ1
gc(P

(x,t)
R (t)) ⊂ {(x, t) | x ∈ MCC(t)} and, by Lemma 4.7.2,

Σgc(PCC(t)) = Σgc(P
(x,t)
R (t)), locally. Consequently the following holds in a neigh-

borhood Vx × Vt of (x, t):

- For any (x, t) ∈ Σgc(PCC(t)) ∩ (Vx × Vt), the active index sets do not
change and are J0(x, t) = J0(x, t), Ir(x, t) = Ir(x, t), Is(x, t) = Is(x, t),
and Irs(x, t) = Irs(x, t).

- Σgc(PCC(t)) ∩ (Vx × Vt) = Σ1
gc(P

(x,t)
R ) ∩ (Vx × Vt).

- There is a continuous function x : [t− ε, t+ ε] → Rn, x(t) = x, ε > 0, such
that Σgc(PCC(t)) ∩ (Vx × Vt) = {(x(t), t), [t− ε, t+ ε]}.

Around a g.c. point (x, t) of type 1, the multipliers ρi, σi, µj i ∈ Irs(x, t),
j ∈ J0(x, t) and the eigenvalues of ∇2

xL|TxM(x,t)
R (t)

do not change their sign. In

particular the indices (LI, LNI, QI, QNI) = (a, b, c, d) are constant, see
Figure 4.1. So all stationarity types remain locally stable.

The LICQ condition for (x, t) in P
(x,t)
R (t) is equivalent to MPCC-LICQ in

PCC(t). So B-stationarity and strong stationarity are equivalent. The fulfillment
of the MPCC-SC condition implies the equivalence between M -stationarity and
strong stationarity.

G.C. points of type 2. For the g.c. points of type 2 we have to distinguish
between two cases.

Definition 4.7.4 A g.c. point (x, t) is a g.c. point of type 2a for PCC(t) if it is

a g.c. point of type 2 for P
(x,t)
R (t), with µj = 0, for some j ∈ J0(x, t).

It is a g.c. point of type 2b for PCC(t) if it is a g.c. point of type 2 for P
(x,t)
R (t),

with either ρi∗ = 0 or σi∗ = 0, for some i∗ ∈ Irs(x, t).

In the case of a g.c. point of type 2a, the local structure is the same as in classical
nonlinear programming around a g.c. point of type 2, and locally

Σgc(PCC(t)) = Σgc(P
(x,t)
R (t)).
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x

t

(a,b,c,d)

(a,b,c,d)

Figure 4.1: G.C. points of type 1

Let us consider a g.c. point (x, t) of type 2b. W.l.o.g. we assume
σi∗ = si∗(x, t) = 0 for some i∗ ∈ Irs(x, t). As it is a g.c. point of type 2 for

P
(x,t)
R (t), the possible active constraints for a g.c. point (x, t) of P

(x,t)
R (t) near

(x, t), are given by:

B1:


gj(x, t) = 0, j ∈ J0(x, t),
ri(x, t) = 0, i ∈ Ir(x, t) ∪ Irs(x, t),
sk(x, t) = 0, k ∈ Is(x, t) ∪ Irs(x, t).

B2:


gj(x, t) = 0, j ∈ J0(x, t),
ri(x, t) = 0, i ∈ Ir(x, t) ∪ Irs(x, t),
sk(x, t) = 0, k ∈ Is(x, t) ∪ Irs(x, t) \ {i∗} .

As (x, t) ∈ Σ2
gc(P

(x,t)
R (t)), around t = t, the set Σgc(P

(x,t)
R (t)) bifurcates at (x, t)

into two parts. One part corresponds to the case B1 and is described by a
differentiable curve C1 = {(x1(t), t) | t ∈ [t − ε, t + ε], x1(t) = x}. The part
associated to B2, denoted as C0, has exactly one feasible branch: if si∗(x, t) > 0,
for t > t, the set C0 is {(x0(t), t) | t ∈ [t, t+ ε], x0(t) = x} and if si∗(x, t) > 0, for
t < t, we have C0 = {(x0(t), t) | t ∈ [t− ε, t], x0(t) = x}. These cases correspond
to Dt[si∗(x

0(t), t)](t) > 0 and Dt[si∗(x
0(t), t)](t) < 0 respectively. Recall that

since (x, t) is a g.c. point of type 2 of P
(x,t)
R (t), Dt[si∗(x

0(t), t)](t) 6= 0. Moreover
on the curve (x1(t), t), t ∈ [t− ε, t+ ε], the multiplier σ1

i∗(t) corresponding to the
active constraint si∗(x, t) changes its sign around t.

Note that, around (x, t), for the generalized critical points (x, t) of P
(x,t)
R (t) it

holds x ∈MCC(t). So, locally, Σgc(PCC(t)) = Σgc(P
(x,t)
R (t)).

Summarizing, around a g.c. point of type 2b with σi∗ = si∗(x, t) = 0 we have:
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Figure 4.2: G.C. point of type 2a

x

t

P
R0

P
R

Figure 4.3: G.C. point of type 2b

- The possible combination of active indices sets for (x, t) ∈ Σgc(PCC(t)) near
(x, t), are

· J0(x, t) = J0(x, t), Ir(x, t) = Ir(x, t), Is(x, t) = Is(x, t),
Irs(x, t) = Irs(x, t)

· J0(x, t) = J0(x, t), Ir(x, t) = Ir(x, t) ∪ {i∗} , Is(x, t) = Is(x, t),
Irs(x, t) = Irs(x, t) \ {i∗}.

- Σgc(PCC(t)) = C0 ∪ C1 = Σ1
gc(PCC(t)) ∪ {x, t}.

- Around t the multiplier σ1
i∗(t) changes its sign.

We want to point out that for (x, t) ∈ C1 the corresponding relaxed problem is

given by P
(x,t)
R (t), but it changes for (x, t) ∈ C0. We will denote it as P

(x,t)
R0 (t).

The picture of the set of generalized critical points around a g.c. point of type
2a and 2b is depicted, respectively, in the Figures 4.2 and 4.3.
Now we are going to describe the local behavior with regard to stationarity.
Around g.c. points of type 2a, a multiplier µj, j ∈ J0(x, t) changes its sign. So,
trivially no stationarity type is locally stable.

Let us consider the g.c. points of type 2b, with σi∗ = si∗(x, t) = 0. We will
denote by σ1

i (t), ρ
1
i (t), i ∈ Irs(x, t), µ

1
j(t), j ∈ J0(x, t), the multipliers corre-

sponding to (x1(t), t) ∈ C1 with respect to the functions si, ri, gj, i ∈ Irs(x, t),
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j ∈ J0(x, t). Analogously σ0
i (t), ρ

0
i (t), i ∈ Irs(x, t) \ {i∗}, ρ0

i∗(t) µ
0
j(t), j ∈ J0(x, t)

are the multipliers associated to (x0(t), t) ∈ C0. Recall si∗(x, t) > 0, for all
(x, t) ∈ C0 \ {(x, t)}. W.l.o.g. we assume:

The multiplier σ1
i∗(t) is positive for t > t and negative for t < t. (4.7.9)

Due to the conditions for g.c. points of type 2, it follows that the signs of
σ1

i (t), ρ
1
i (t), µ

1
j(t), i ∈ Irs(x, t) \ {i∗}, j ∈ J0(x, t) and ρ1

i∗(t) coincide with the
signs of σ0

i (t), ρ
0
i (t), µ

0
j(t), i ∈ Irs(x, t) \ {i∗}, j ∈ J0(x, t) and ρ0

i∗(t) respectively.
As MPCC-LICQ holds, B-stationarity and strong stationarity are equivalent

around (x, t). The fulfillment of the MPCC-SC condition (except for (x, t))
implies that M -stationarity and B-stationarity are also equivalent (locally) for
(x, t) 6= (x, t). So, let us analyze the behavior of strong stationarity.

For simplicity, we assume that the points of C0 \{x, t} are strongly stationary
points. This means that σ0

i (t) > 0, ρ0
i (t) > 0, ∀i ∈ Irs(x, t) \ {i∗}, µ0

j(t) > 0,
j ∈ J0(x, t) and the sign of ρ0

i∗(t) is free. Then, if ρ0
i∗(t) < 0, the points of

C0 \ {x, t} are strongly stationary points but as i∗ ∈ Irs(x
1(t), t), t ∈ [t− ε, t+ ε],

and ρ1
i∗(t) < 0, it follows that the elements of C1 are not strongly stationary

points. If ρ0
i∗(t) > 0, due to assumption (4.7.9), σ1

i∗(t) > 0 only for t > t. So,
(x1(t), t) is a strongly stationary point if and only if t > t.

As for the case 2b the multipliers µj, j ∈ J0(x, t), do not change their sign,
weakly stationarity locally remains stable.

Now let us assume that the points of C0 are A-stationary points. If ρ0
i∗(t) > 0,

A-stationarity is stable in C1 ∪ C0. However, if ρ0
i∗(t) < 0, at (x1(t), t) ∈ C1,

A-stationarity is equivalent with σ1
i∗(t) > 0, so it will be fulfilled if and only if

t > t, see condition (4.7.9).
In case that C-stationarity holds at C0, again by condition (4.7.9), if ρ0

i∗(t) > 0,
the C-stationarity holds for (x1(t), t) ∈ C1 if and only if t > t. If ρ0

i∗(t) < 0, it
will be satisfied for t < t. In both cases only one branch of C1, either for t > t or
for t < t will contain C-stationary points.
With respect to the linear and quadratic indices, we can see that around a g.c.
point of type 2a, they behave as around a g.c. point of type 2 in the nonlinear

program P
(x,t)
R (t). In the case of g.c. points of type 2b, we show all possible

combinations of indices (LI, LNI,QI,QNI) in the Figures 4.4, 4.5, 4.6, and 4.7.
There, all possible cases for the set of strongly stationary points are also consid-
ered. Assuming that the g.c. points in C0, t 6= t, are strongly stationary points,
the continuous line represents the set Σstat while the dotted line corresponds to
the set Σgc \ Σstat.

G.C. points of type 3. At a g.c. point (x, t) of type 3, the second order
condition MPCC-SOC is violated. With the same analysis as for g.c. points of

type 1, it can be seen that, locally, the same relaxed problem P
(x,t)
R (t) remains

93



x

t
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(a-2,b,c,d+1)

(a-1,b+1,c,d)

Case d
dt

[si∗(x
0(t), t)] < 0, Dtσ

1
i∗(t) < 0.

x

t

(a,b,c,d)

(a-1,b-1,c,d+1)

(a+1,b-1,c,d)

Case d
dt

[si∗(x
0(t), t)] > 0, Dtσ

1
i∗(t) > 0.

Figure 4.4: Type 2b, with ρi∗(t) > 0.

x

t

(a,b,c,d)

(a-1,b-1,c,d+1)

(a-1,b+1,c,d)

Case d
dt

[si∗(x
0(t), t)] < 0, Dtσ

1
i∗(t) < 0.

x

t

(a,b,c,d)

(a,b-2,c,d+1)

(a+1,b-1,c,d)

Case d
dt

[si∗(x
0(t), t)] > 0, Dtσ

1
i∗(t) > 0.

Figure 4.5: Type 2b, with ρi∗(t) < 0.
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t

(a,b,c,d)

(a-2,b,c+1,d)

(a-1,b+1,c,d)

Case Dtσ
1
i∗(t) < 0, d

dt
[si∗(x

0(t), t)] > 0.

x

t

(a,b,c,d)

(a-1,b-1,c+1,d)

(a+1,b-1,c,d)

Case Dtσ
1
i∗(t) > 0, d

dt
[si∗(x

0(t), t)] < 0.

Figure 4.6: Type 2b, with ρi∗(t) > 0.
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t

(a,b,c,d)

(a-1,b-1,c+1,d)

(a-1,b+1,c,d)

Case d
dt

[si∗(x
0(t), t)] > 0, Dtσ

1
i∗(t) < 0.

x

t

(a,b,c,d)

(a,b-2,c+1,d)

(a+1,b-1,c,d)

Case d
dt

[si∗(x
0(t), t)] < 0, Dtσ

1
i∗(t) > 0.

Figure 4.7: Type 2b, with ρi∗(t) < 0.
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Figure 4.8: G.C. points of type 3

valid and that Σgc(PCC(t)) = Σgc(P
(x,t)
R (t)). So Σgc has a quadratic turning point

as at a g.c. point of type 3 for the standard parametric nonlinear problem P
(x,t)
R (t).

Moreover, this singularity is isolated and locally Σgc(PCC(t)) = Σ1
gc(PCC(t)) ∪

{(x, t)} (see Figure 4.8).

With respect to stationarity, the situation is as in a g.c. point of type 1.
Locally the stationarity type remains unchanged as the sign of the multipliers
does not change.

Now we will consider the singular points in which MPCC-LICQ is not satisfied. In
these cases, B-stationarity and strong stationarity are not necessarily equivalent.

G.C. points of type 4. Around a g.c. point (x, t) of type 4, the active indices

do not change in Σgc(P
(x,t)
R (t)), so locally:

Σgc(PCC(t)) = Σgc(P
(x,t)
R (t)) = Σ1

gc(PCC(t)) ∪ {x, t}.

This means that Σgc(PCC(t)) has a quadratic turning point around (x, t). More-
over, all multipliers change their sign at (x, t) and ∇xf(x, t) is not a linear com-
bination of the active constraints. In particular this means that (x, t) cannot be
a stationary point.

Now we will proceed with the analysis of the stationarity types. If
Irs(x, t) = J0(x, t) = ∅ (LI = LNI = 0), all stationarity types are equiva-
lent. Moreover, if (x, t) is a critical point then it will also be strongly stationary.
As, locally, Irs(x, t) = J0(x, t) = Irs(x, t) = J0(x, t) = ∅, and MPCC-LICQ holds
for all (x, t) 6= (x, t), the g.c. points with t 6= t are strongly stationary points.
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Figure 4.9: G.C. points of type 4 with Irs(x, t) ∪ J0(x, t) 6= ∅

Now, consider the case Irs(x, t) 6= ∅ and J0(x, t) = ∅. As MPCC-LICQ and
MPCC-SC holds except for (x, t), B-, M - and strong stationarity are equivalent
for Σgc(PCC(t)) \ {x, t}. So we only analyze the behavior of strong stationarity.
But clearly the later is not stable, since around a g.c. point (x, t) of type 4, the
multipliers σi, ρi, i ∈ Irs(x, t), change their sign and at strongly stationary points
they should be both positive. With respect to C-stationarity, only the product
σi ·ρi, i ∈ Irs(x, t) has to be positive, so, locally, C-stationarity remains stable in
Σgc(PCC(t))\{x, t}. As J0(x, t) = ∅, all points of Σgc(PCC(t))\{x, t} are weakly
stationary points. If there are A-stationary points, converging to (x, t) and for
some index i ∈ Irs(x, t) the associated multipliers σi, ρi are positive, then, when
passing (x, t), both will be negative. Consequently in this case the A-stationarity
is not stable. As for A-stationary points either ρi or σi should be positive for all
i ∈ Irs(x, t), when passing the singular point of type 4, A-stationarity is stable if
and only if σi · ρi < 0, ∀i ∈ Irs(x, t).

Finally, if J0(x, t) 6= ∅, then all stationarity types are not stable.

In Figure 4.9 we can see the local behavior of Σgc(PCC(t)) around such a
point. In the case that b = 0, a > 0, the full line represents the set Σstat and the
dotted line, Σgc \ Σstat.

G.C. points of type 5. Let us begin with the characteristics of such a point
and the consequences for the set of g.c. points of the associated relaxed problem

P
(x,t)
R (t).

For the problem P
(x,t)
R (t), the point (x, t) ∈ Σ5

gc(P
(x,t)
R (t)) is an isolated singular

point. Moreover, the set Σgc(P
(x,t)
R (t)) bifurcates around (x, t). Each bifurcation

branch corresponds to g.c. points where ∇xf is a linear combination of the
gradients of all active constraints, except for one active inequality constraint.

The set of g.c. points is composed by the feasible points of P
(x,t)
R (t) which are

g.c. points of one of the nonlinear programs (P gj∗ (t)), (P si∗ (t)), (P ri∗ (t)) for
i∗ ∈ Irs(x, t), j

∗ ∈ J0(x, t). Here
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P gj∗ (t) : min f(x, t)
s.t. hk(x, t) = 0, k = 1, . . . , q0,

gj(x, t) = 0, j ∈ J0(x, t) \ {j∗},
ri(x, t) = 0, i ∈ Ir(x, t) ∪ Irs(x, t),
si(x, t) = 0, i ∈ Is(x, t) ∪ Irs(x, t),

corresponds to the case where the constraint gj∗(x, t), j
∗ ∈ J0(x, t) is not longer

active. In the same way for si∗(x, t), i
∗ ∈ Irs(x, t), we define P si∗ (t) and for

ri∗(x, t), i
∗ ∈ Irs(x, t), P

ri∗ (t).
Now we consider one of these problems, taking P gj∗ (t) w.l.o.g. Due to the

condition

rank
(
∇(x,t)

[
h1, . . . , hq0 , gJ0(x,t), rIr(x,t), rIrs(x,t), sIrs(x,t)sIs(x,t)

]
(x, t)

)
= n+ 1,

the eliminated constraint (gj∗(x, t)) will change its sign around the point (x, t) in
the set of g.c. points of P gj∗ (t). So, exactly one branch, corresponding to t > t

or t < t, will consist of g.c. points of P
(x,t)
R (t). On this branch the eliminated

constraint will be strictly positive. The branch where this happens, i.e., either
for t > t or for t < t, can be determined by using the coefficients of the following
(non trivial) linear combination, see e.g., [21]:

q0∑
k=1

λk∇xhk(x, t) +
∑

j∈J0(x,t)

µj∇xgj(x, t)+

+
∑

i∈Ir(x,t)∪Irs(x,t)

ρi∇xri(x, t) +
∑

i∈Is(x,t)∪Irs(x,t)

σi∇xsi(x, t) = 0
(4.7.10)

Now we will present the meaning of these facts for the set of g.c. points of PCC(t).
Note that, for (x, t) near to (x, t), any feasible point x of P gj∗ (t) with

gj∗(x, t) ≥ 0, is also feasible for MCC(t). The same holds in the case that x
is a feasible point of P si∗ (t) (respectively P ri∗ (t)) and si∗(x, t) ≥ 0 (respectively

ri∗(x, t) ≥ 0). Consequently Σgc(PCC(t)) = Σgc(P
(x,t)
R (t)) holds and Σgc(PCC(t))

also bifurcates into |J0(x, t)|+ 2|Irs(x, t)| branches.
Now we will consider the relaxed problem that corresponds to each branch.

On the branch where gj∗(x, t) > 0 holds for some j∗ ∈ J0(x, t), locally, the cor-

responding relaxed problem is given by P
(x,t)
R (t). The branch in which si∗(x, t),

i∗ ∈ Irs(x, t) is no longer active, corresponds to the active index sets, J0(x, t),
Ir(x, t)∪{i∗} , Is(x, t), Irs(x, t)\{i∗}. We denote the corresponding relaxed prob-
lem by P si∗

R (t). In the case of deactivating ri∗ , i
∗ ∈ Irs(x, t) the corresponding

active index sets are J0(x, t), Ir(x, t), Is(x, t) ∪ {i∗} , Irs(x, t) \ {i∗} and the asso-
ciated relaxed problem is denoted by P ri∗

R (t).
Considering all possible combinations we can conclude that, locally, the following
holds:

- Σgc(PCC(t)) = Σ1
gc(PCC(t)) ∪ {(x, t)}.

- Σgc(PCC(t)) bifurcates into |J0(x, t)|+ 2|Irs(x, t)| branches.
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If MFCQ holds
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If MFCQ fails

Figure 4.10: G.C. point of type 5

- Σgc(PCC(t)) =
⋃

i∈Irs(x,t) (Σgc(P
si
R (t)) ∪ Σgc(P

ri
R (t)))

⋃
Σ0

gc(P
(x,t)
R (t)), where

Σ0
gc(P

(x,t)
R (t)) denotes the set of g.c. points corresponding to all problems

P gj∗ (t), which are the only g.c. points with associated relaxed problem

P
(x,t)
R (t).

Figure 4.10 shows the behavior of this set, when Irs(x, t) = {1} and
J0(x, t) = {1, 2}.

As, locally, Σgc(PCC(t)) = Σgc(P
(x,t)
R (t)) holds, the set of g.c. points will have

a non-smooth turning point if and only if MFCQ fails at x ∈M(x,t)
R (t).

We end with the analysis of the stationarity types. Let us suppose that there
is a branch of (strongly ,M -, B-,C- or A-) stationary points. In this case, when
moving to a new branch, the new multipliers will depend on the coefficients of the
linear combination given in (4.7.10) and the multipliers at the original branch. In
general all combinations of signs are possible. In any case, when calculating the
new multipliers, we will be able to check whether the stationarity type remains
stable or not.

Concluding, the analysis of these singularities allow us to implement a pathfol-
lowing algorithm for generic parametric MPCC problems. Indeed at a g.c. point
we can locally follow Σgc(PCC(t)) by means of well determined nonlinear opti-
mization problems. We can also check numerically when it is possible to leave or
enter the set of C-, B-, strongly stationary points.
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Chapter 5

Bilevel problems

5.1 Introduction

Bilevel problems represent another important class of optimization problems
whose structure is

PBL : min
x,y

f(x, y)

s.t. (x, y) ∈MBL

(5.1.1)

MBL =

{
(x, y) ∈ Rn+m

∣∣∣∣ gj(x, y) ≥ 0, j = 1, . . . , q,
y solves Q(x).

}
Here x ∈ Rn, y ∈ Rm and Q(x) stands for the parametric optimization problem

Q(x) : min
y
φ(x, y)

s.t. y ∈ Y (x)
Y (x) = {y ∈ Rm | vi(x, y) ≥ 0, i = 1, . . . , l}

and is called lower level problem. As usual (f, g1, . . . , gq, ) ∈ [C2]1+q+l
n+m . We will

require (φ, v1, . . . , vl) ∈ [C3]1n+m.
This kind of problem appears in many applications such as Cournot equi-

librium problems, see (1.4.2), or when solving semi-infinite programs, see [59].
However, finding a solution is not an easy problem, because even in order to
check feasibility one must solve a nonlinear optimization problem Q(x). Bilevel
problems have been investigated in a large number of papers and books, see e.g.,
[3], [42], [11] and the references therein.

We may try to solve PBL via a reduction approach as described in [60]. The
idea is, roughly, the following: if we denote the solution of Q(x) by y(x) and if we
suppose that at least near a point x this function behaves well, i.e., y(x) ∈ C1,
then locally near x the problem can be written equivalently as the standard
program:

min f(x, y(x))
s.t. gj(x, y(x)) ≥ 0, j = 1, . . . , q.

101



However, this assumption is a very strong hypothesis as can be seen in the fol-
lowing example.

Example 5.1.1

min 2x1 + x2 + y
s.t. x1 ≥ 0,

y solves Q(x) : min y
s.t. x1 + y ≥ 0,

x2 + y ≥ 0.

The solution of the lower level problem is y = −x1 if x1 ≤ x2 and y = −x2 in
the other case. So the function y(x) is not C1 around x = (0, 0) and the point
(0, 0, 0) is a global minimizer of the problem.

An alternative solution is via a KKT approach. The constraint y solves Q(x), is
replaced by the KKT condition:

∇yφ(x, y)−
l∑

i=1

λi∇yvi(x, y) = 0,

vi(x, y) ≥ 0, i = 1, . . . , l,
λi ≥ 0, i = 1, . . . , l,

λivi(x, y) = 0, i = 1, . . . , l.

(5.1.2)

So instead of PBL, we solve the complementarity constrained problem

PKKTBL : min
x,y,λ

f(x, y)

s.t. (x, y, λ) ∈MKKTBL,
(5.1.3)

where

MKKTBL =


(x, y, λ) ∈ Rn+m+l

∣∣∣∣∣∣∣∣∣∣∣∣

∇yφ(x, y)−
l∑

i=1
λi∇yvi(x, y) = 0,

vi(x, y) ≥ 0, i = 1, . . . , l,
λi ≥ 0, i = 1, . . . , l,

λivi(x, y) = 0, i = 1, . . . , l,
gj(x, y) ≥ 0, j = 1, . . . , q.


The FJ necessary condition can also be used. It will lead to a MPCC problem
with a similar structure.

Due to the additional variable λ, the program (5.1.3) can be seen as a lifting
procedure. On the other hand it is a relaxation of the original problem PBL

(5.1.1) in the sense that, if (x, y) ∈ MBL and MFCQ holds at y ∈ Y (x), then
there is some λ ∈ Rl such that (x, y, λ) ∈MKKTBL. Moreover, if (x, y, λ) is a local
solution of problem (5.1.3) such that y is a minimizer of Q(x) and MFCQ holds
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at y ∈ Y (x), then (x, y) must also be a local solution of PBL. In the case that
Q(x) is a convex program and MFCQ is satisfied for all y ∈ Y (x), both problems
(5.1.1) and (5.1.3) are equivalent.

Obviously, PKKTBL is a special instance of a complementarity constrained prob-
lem. So, we can apply the solution method of Chapter 4, i.e., we can try to solve
the perturbed problem Pτ (see problem (4.5.1) in Section 4.6) using standard
software of nonlinear programming. For general MPCC problems, this approach
has a favorable convergence behavior under natural assumptions, see Chapter 4.
However, since PKKTBL is a MPCC with a special structure, these assumptions
may not be generically fulfilled. In the sequel, we will study the properties of
PKKTBL from a generical point of view. We will present an algorithm that under
these generical conditions will find a critical point of PBL.

The following question arises. How is the structure of the KKT model com-
pared with the structure of the original bilevel program, especially at solutions
(x, y) where the reduction approach fails as in Example 5.1.1. We will see that
the singular behavior of PBL will partially reappear in the KKT formulation.

The chapter is organized as follows. In the next section we study the problem
(5.1.3) as a complementarity constrained program and examine its structure from
a generical viewpoint. This analysis will be used to obtain in Section 5.3 a
numerical procedure for solving bilevel problems. We end with some numerical
examples.

5.2 Genericity analysis of the KKT approach

We consider the KKT formulation (5.1.3) of the bilevel problem PBL . Since it is
a complementarity constrained program with a special structure, the genericity
results of Chapter 4, developed for the general case, are no more valid. We have to
perform a modified genericity analysis. It appears that also for PKKTBL, generically
MPCC-LICQ is satisfied at all feasible points. But for the local minimizers
(x, y, λ), the situation may be more complicated than for the general MPCC
problems. We will see that the conditions MPCC-SC and MPCC-SOC may fail
at local minimizers (x, y, λ) of PKKTBL where, for the corresponding minimizer
(x, y) of PBL, the lower level problem Q(x) does not allow a local reduction as in
Example 5.1.1.

With respect to a feasible point (x, y, λ) of problem PKKTBL, we introduce the
following active index sets:
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J0v(x, y) = {i | vi(x, y) = 0},
J0(x, y, λ) =

{
i | vi(x, y) = 0, λi > 0

}
,

JΛ0(x, y, λ) =
{
i | vi(x, y) = λi = 0

}
, (5.2.1)

Λ0(x, y, λ) =
{
i | vi(x, y) > 0, λi = 0

}
,

J0g(x, y) = {j | gj(x, y) = 0}.

Note that J0v(x, y) = J0(x, y, λ) ∪ JΛ0(x, y, λ). This union does not depend on
λ.

Theorem 5.2.1 Let (φ̂, v̂1, . . . , v̂l) ∈ [C3
S]1+l

n+m and (ĝ1, . . . , ĝq) ∈ [C2
S]qn+m be fixed.

For almost all (Cx
φ , C

y
φ, dφ, Cv, dv, Cg, dg) ∈ Rmn+

m(m+1)
2

+m+l(n+m)+l+q(n+m)+q, the
condition MPCC-LICQ holds at all feasible points of problem (5.1.3) defined by

φ(x, y) = φ̂(x, y)+xT [Cx
φ ]Ty+

yT [Cy
φ]y

2
+ dT

φy, v(x, y) = v̂(x, y)+Cv(x, y)+ dv and

g(x, y) = ĝ(x, y) + Cg(x, y) + dg. Here R
m(m+1)

2 denotes the space of symmetric
matrices of order m.
Moreover, generically in the set {(φ, v, g)} = [C3

S]1+l
n+m × [C2

S]qn+m, the condition
MPCC-LICQ holds at all feasible points of the set MKKTBL defined by (φ, v, g).

Proof . Note that a similar result under stronger conditions has been proven
in [52] for mathematical programs with variational inequality constraints, see
problem (1.1.8).
The idea of the proof is the following. For any feasible point (x, y, λ) of the
problem given by (φ, v, g), there is a partition J0 = J0(x, y, λ), JΛ0 = JΛ0(x, y, λ),
Λ0 = Λ0(x, y, λ) of {1, . . . , l} and a set J0g = J0g(x, y) ⊂ {1, . . . , q}, such that
(x, y, λ) solves the system:

∇yφ(x, y)−
l∑

i=1

λi∇yvi(x, y) = 0,

vi(x, y) = 0, i ∈ J0 ∪ JΛ0,
λi = 0, i ∈ JΛ0 ∪ Λ0,

gj(x, y) = 0, j ∈ J0g.

(5.2.2)

If MPCC-LICQ fails, then the gradients of the active constraints in (5.2.2)
are linearly dependent, i.e., there exists a non-zero vector (α, β, µ, γ) ∈ Rκ,
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κ = m+ |J0 ∪ JΛ0|+ |J0g|+ |JΛ0 ∪ Λ0|, such that:

∇x[∇yφ(x, y)]T −
l∑

i=1

λi∇x[∇yvi(x, y)]
T

∇2
yφ(x, y)−

l∑
i=1

λi∇2
yvi(x, y)

α+

+
∑

i∈J0∪JΛ0

βi∇(x,y)vi(x, y) +
∑

j∈J0g

µj∇(x,y)gj(x, y) = 0,

∇yvi(x, y)
Tα = 0, i ∈ J0,

∇yvi(x, y)
Tα− γi = 0, i ∈ JΛ0 ∪ Λ0.

(5.2.3)

If α = 0, then γ = 0, and thus at (x, y) the gradients ∇(x,y)gJ0g , ∇(x,y)vJ0∪JΛ0 are
linearly dependent. This means that in this case LICQ fails in M0

KKTBL, where

M0
KKTBL =

{
(x, y) ∈ Rn+m

∣∣∣∣ vi(x, y) ≥ 0, i = 1, . . . , l,
gj(x, y) ≥ 0, j = 1, . . . , q.

}

But asM0
KKTBL is the feasible set of a common nonlinear program, it is known that,

for almost every linear perturbation of (v̂1, . . . , v̂l, ĝ1, . . . , ĝq), the LICQ condition
holds for all (x, y) ∈ M0

KKTBL. This means that, for almost every (Cv, dv, Cg, dg)
there is no feasible point of MKKTBL solving the system (5.2.3) with α = 0.

So, we only have to consider the remaining case α 6= 0. Let us fix the set of
active constraints (J0, JΛ0,Λ0). W.l.o.g. we assume α1 6= 0 and take the corre-
sponding combination in (5.2.3):

(1, α0
2, . . . α

0
m, β

0, µ0, γ0) = (
α

α1

,
β

α1

,
µ

α1

,
γ

α1

).

Note that (α0
2, . . . , α

0
m, β

0, µ0, γ0) ∈ Rκ−1. Then, if MPCC-LICQ fails for

φ = φ̂(x, y) + xT [Cx
φ ]Ty +

yT [Cy
φ]y

2
+ dT

φy, v = v̂(x, y) + Cv(x, y) + dv and
g = ĝ(x, y) + Cg(x, y) + dg, the condition (5.2.3) for the perturbed problem now
reads:
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[
∇(x,y)[∇yφ(x, y)]T −

l∑
i=1

λi∇(x,y)[∇yvi(x, y)]
T

]
1
α0

2
...
α0

m

+

∑
i∈J0∪JΛ0

β0
i∇(x,y)[vi(x, y)] +

∑
j∈J0g

µ0
j∇(x,y)gj(x, y) = 0,

∇y[vi(x, y)]
T


1
α0

2
...
α0

m

 = 0, i ∈ J0,

∇y[vi(x, y)]
T


1
α0

2
...
α0

m

− γ0
i = 0, i ∈ JΛ0 ∪ Λ0,

∇yφ(x, y)−
l∑

i=1

λi∇yvi(x, y) = 0,

vi(x, y) = 0, i ∈ J0 ∪ JΛ0,
λi = 0, i ∈ Λ0 ∪ JΛ0,

gj(x, y) = 0, j ∈ J0g.

(5.2.4)

The Jacobian matrix of the system (5.2.4) with respect to the variables
(x, y, λ, α0

2, . . . , α
0
m, β

0, µ0, γ0) and the parameters (Cx
φ , C

y
φ, dφ, Cv, dv, Cg, dg), is:

∂(x,y) ∂λ ∂α0
2,...,α0

m,β0,µ0 ∂γ0 ∂Cx
φ ,Cy

φ
∂dφ

∂Cv ∂dv ∂dg

⊗ ⊗ ⊗ 0 Ωφ 0 ⊗ 0 0
⊗ 0 ⊗ 0 0 0 Ωv 0 0
⊗ 0 ⊗ 0|I|JΛ0∪Λ0| 0 0 ⊗ 0 0
⊗ ⊗ 0 0 ⊗ Im ⊗ 0 0
⊗ 0 0 0 0 0 ⊗ I|J0∪JΛ0||0 0
0 0|I|JΛ0∪Λ0| 0 0 0 0 0 0 0
⊗ 0 0 0 0 0 0 0 I|J0g| |0

where Ωv =

(0, . . . , 0, 1, α0
2, . . . , α

0
m) . . . 0

0
. . . 0

0 . . . (0, . . . , 0, 1, α0
2, . . . , α

0
m)

 has |J0|

rows and Ωφ =

In|⊗ 0

0
1 ⊗ ⊗
0 Im−1 ⊗

.

It can be seen that the Jacobian matrix has full row rank. By the Parameter-
ized Sard Lemma, see Lemma 2.3.1, for almost every (Cx

φ , C
y
φ, dφ, Cv, dv, Cg, dg),
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the matrix formed by the columns of the Jacobian matrix corresponding to the
variables (x, y, λ, α0

2, . . . , α
0
m, β

0, µ0, γ0) has full row rank. But the number of
rows, n+m+ l +m+ |J0 ∪ JΛ0|+ |JΛ0 ∪ Λ0|+ |J0g|, is larger than the number
n+m+ l+m−1+ |J0∪JΛ0|+ |J0g|+ |JΛ0∪Λ0| of columns. This means that for
almost every parameter, there is no solution of system (5.2.4), i.e., MPCC-LICQ
holds.
If we consider any possible combination of active index sets J0, JΛ0,Λ0 and J0g an
analogous result is obtained. The perturbation result follows by intersecting the
set of parameters where MPCC-LICQ holds at the solutions of system (5.2.4),
for all possible combinations of active index sets.

We now turn to the proof of the genericity statement. First we will prove
that, for fixed N ∈ N, the set of functions (φ, v, g) where MPCC-LICQ holds
at all feasible points (x, y, λ) of MKKTBL with ‖λ‖ ≤ N , is open and dense in
[C3

S]1+l
n+m × [C2

S]qn+m.

The density part of the statement follows, as usual, directly from the per-
turbation result shown above, by using partitions of unity. For more details see
[52].

Now we will prove the openness property. We proceed as in the proof of
Proposition 4 in [53]. Consider (φ̂, v̂1, . . . , v̂l, ĝ1, . . . , ĝq) such that, for the result-
ing set MKKTBL, MPCC-LICQ holds at all feasible points (x, y, λ), with ‖λ‖ ≤ N .
Let us fix (x, y) ∈ Rn × Rm. By continuity, it can be seen that, if

(x, y, λ) 6∈ MKKTBL, then for all λ ∈ B
l

N(0) there is a neighborhood V(x,y) of

(φ̂, v̂, ĝ) and U of (x, y) such that for all (φ, v, g) ∈ V(x,y)[
U ×B

l

N(0)
]
∩MKKTBL = ∅

holds for the feasible set MKKTBL corresponding to (φ, v, g).

Let (x, y) be a point such that (x, y, λ) ∈ MKKTBL, for some λ ∈ B
l

N(0). By
assumption, at this point MPCC-LICQ is valid. Using a continuity argument,
we can prove that there are neighborhoods U and V(x,y) of (x, y) and (φ̂, v̂, ĝ),

respectively, such that, for all (x, y, λ) ∈
[
U ×B

l

N(0)
]
∩MKKTBL, the MPCC-LICQ

condition holds at the feasible set MKKTBL corresponding to (φ, v, g) ∈ V(x,y).

Using the neighborhoods V(x,y) and a locally finite cover w.r.t. the (x, y)-

space, we can construct a neighborhood V̂ of (φ̂, v̂, ĝ) such that MPCC-LICQ
holds at all feasible points (x, y, λ) of problem (5.1.3), defined by (φ, v, g) ∈ V̂
and with ‖λ‖ ≤ N .

Altogether we have proven that the set of functions (φ̂, v̂, ĝ) such that the
MPCC-LICQ condition is satisfied, at all feasible points (x, y, λ) of MKKTBL with
‖λ‖ ≤ N , is open and dense.
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Finally, if we intersect these open and dense sets for N = 1, 2, . . ., we will
obtain the generic set of functions where MPCC-LICQ holds at all feasible points.

2

We now study the structure of the critical points of problem (5.1.3) in the generic
case. The critical points (x, y, λ) are feasible points with associated multipliers
(α, β, µ, γ) such that (x, y, λ, α, β, µ, γ) solves the system:

∇(x,y)f(x, y)−
∑

i∈J0∪JΛ0

βi∇(x,y)vi(x, y)−
∑

j∈J0g

µj∇(x,y)gj(x, y)−

−

∇x[∇yφ(x, y)]T −
l∑

i=1

λi∇x[∇yvi(x, y)]
T

∇2
yφ(x, y)−

l∑
i=1

λi∇2
yvi(x, y)

α = 0, (5.2.5)

∇yvi(x, y)
Tα = 0, i ∈ J0,

∇yvi(x, y)
Tα− γi = 0, i ∈ JΛ0 ∪ Λ0

with J0, JΛ0,Λ0, J0g, the active index sets at (x, y, λ), as defined in (5.2.1).
Note that, as generically MPCC-LICQ holds, generically any solution of

(5.1.3) must satisfy the KKT conditions (5.2.5). For numerical purposes, it is
desirable that the conditions MPCC-SC and MPCC-SOC hold at critical points.
However, as we shall show, MPCC-SC may fail generically. Let us consider the
problem:

min−x− y
s.t. y solves Q(x) : min y

s.t. −x+ y ≥ 0,
−y ≥ 0.

(5.2.6)

It can easily be seen that in this problem, MFCQ fails at the solution y = 0 of
the lower level problem Q(0). The point (x, y) = (0, 0) is the minimizer of the
bilevel problem and at y the condition MFCQ fails for Q(x). In the Figure 5.1
the feasible set and the solution is depicted.

The KKT approach leads to the program:

min−x− y
s.t. −x+ y ≥ 0,

−y ≥ 0,
1− λ1 + λ2 = 0,

λ1, λ2 ≥ 0,
(−x+ y)λ1 = 0,

−yλ2 = 0.

(5.2.7)
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Figure 5.1: Feasible set of bilevel program (5.2.6)

and (x, y, λ1, λ2) = (0, 0, λ1, λ1− 1), λ1 ≥ 1 are global minimizers. If we take the
point z := (0, 0, 1, 0), the critical point condition for the MPCC problem (5.2.7)
is: 

−1
−1
0
0

 =


−1
1
0
0

 β1 +


0
−1
0
0

 β2 +


0
0
−1
1

α+


0
0
0
1

 γ

So the multipliers are α = γ = 0 and β1 = 1, β2 = 2. As JΛ0(z) = {2}, MPCC-
SC fails.
In case we take z = (0, 0, λ1, λ1 − 1), λ1 > 1, although MPCC-SC holds, since
JΛ0(z) = ∅, the condition MPCC-SOC will fail. Note that TzMKKTBL is gen-
erated by the vector (0, 0, 1, 1) while ∇2

(x,y,λ)L(0, 0, λ1, 1 − λ1, 1, 2, 0, 0) = 0, so,

∇2
(x,y,λ)L|TzMKKTBL

(0, 0, λ1, 1− λ1, 1, 2, 0, 0) is a singular matrix.
As can be seen in Figure 5.1, if we slightly perturb the functions describing the
constraints as −x + y + ε3(x, y) and −y + ε4(x, y), there will be a point (x∗, y∗)
satisfying

−x+ y + ε3(x, y) = 0,

−y + ε4(x, y) = 0.

Now, if we perturb the objective function of the lower level problem as y+ε2(x, y),
the lower level multipliers λ1, λ2 should fulfill the KKT condition for problem
Q(x∗):

1 +
∂ε2
∂y

(x∗, y∗)− λ1(1 +
∂ε3
∂y

(x∗, y∗)) + λ2(1−
∂ε4
∂y

(x∗, y∗)) = 0.
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So in particular (λ∗1, λ
∗
2) = (

1+
∂ε2
∂y

(x,y)

1+
∂ε3
∂y

(x∗,y∗)
, 0) solves the previous equation. This

means that the point (x∗, y∗, λ∗1, 0) is a feasible point of MKKTBL for the perturbed
functions. Now we turn to the objective function of the upper level problem.
Assume it is perturbed as −x − y + ε1(x, y) with |ε1(x, y)| � 1, |∇ε1(x, y)| � 1
and |∇2ε1(x, y)| � 1, for all (x, y) ∈ Rn × Rm. Then, the critical point system
for (x, y, λ) = (x∗, y∗, λ∗1, 0), α = γ = 0 reads:

(
−1 + ∂ε1

∂x
(x∗, y∗)

−1 + ∂ε1
∂y

(x∗, y∗)

)
=

(
−1 + ∂ε3

∂x
(x∗, y∗)

1 + ∂ε3
∂y

(x∗, y∗)

)
β1 +

(
∂ε4
∂x

(x∗, y∗)
−1 + ∂ε4

∂y
(x∗, y∗)

)
β2.

As |∇εi| � 1, i = 3, 4, the matrix

(
−1 + ∂ε3

∂x
(x∗, y∗) ∂ε4

∂x
(x∗, y∗)

1 + ∂ε3
∂y

(x∗, y∗) −1 + ∂ε4
∂y

(x∗, y∗)

)
, is non-

singular. From these facts, it follows that the point (x∗, y∗, λ∗1, 0) is a critical point
of this perturbed problem with corresponding multipliers (α, β, γ) and α = γ = 0.

As a consequence we have shown that the failure of MPCC-SC at a solution
of PKKTBL, may remain stable under small perturbations.

The next result describes the generic properties of the critical points:

Theorem 5.2.2 Given (f̂ , φ̂, v̂1, . . . , v̂l, ĝ1, . . . , ĝq), let us consider the perturbed

functions f = f̂ + bT (x, y), φ = φ̂(x, y) + cTφy, vi = v̂i + cTvi
y + dvi

, gj = ĝj + dgj
.

Then for almost every (b, cφ, cv1 , . . . , cvl
, dv, dg), at all solutions (x, y, λ, α, β, γ, µ)

of the corresponding system (5.2.5), i.e. (x, y, λ) is a critical point of problem
(5.1.3), the following holds:

BL-1: If α 6= 0, then the MPCC-LICQ, MPCC-SC and MPCC-SOC conditions
are fulfilled w.r.t. the corresponding complementarity constrained problem
(5.1.3).

BL-2: If α = 0, then rank(∇yvJ0v(x,y)(x, y)) = m and the multipliers (µ, β) associ-
ated with gj(x, y), vi(x, y), j ∈ J0g(x, y), i ∈ J0v(x, y), are not equal to zero.
Moreover there is some λ∗ such that (x, y, λ∗) is a critical point of problem
PKKTBL and rank(∇yvJ0(x,y,λ∗)(x, y)) =| J0(x, y, λ

∗) |= m. For any λ∗ such
that the previous condition holds, the MPCC-SOC is satisfied at (x, y, λ∗).
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Proof . At a critical point (x, y, λ) of the problem PKKTBL, the following system
has a solution:

∇(x,y)f(x, y)−
∑

i∈J0∪JΛ0

βi∇(x,y)vi(x, y)−

−
∑

j∈J0g

µj∇(x,y)gj(x, y)−

−

∇x∇yφ(x, y)−
l∑

i=1

λi∇x∇yvi(x, y)

∇2
yφ(x, y)−

l∑
i=1

λi∇2
yvi(x, y)

α = 0,

∇T
y vi(x, y)α = 0, i ∈ J0,

∇T
y vi(x, y)α− γi = 0, i ∈ JΛ0 ∪ Λ0,

∇yφ(x, y)−
l∑

i=1

λi∇yvi(x, y) = 0,

vi(x, y) = 0, i ∈ J0 ∪ JΛ0,
λi = 0, JΛ0 ∪ Λ0,

gj(x, y) = 0, j ∈ J0g,
βi = 0, i ∈ JΛ∗

0β ⊂ JΛ0,
γi = 0, i ∈ JΛ∗

0γ ⊂ JΛ0,
µj = 0, j ∈ J∗0g ⊂ J0g,

(5.2.8)

where some of the multipliers βi, γi, µj, i ∈ JΛ0, j ∈ J0g are equal to zero. The
corresponding index sets are denoted by JΛ∗

0β, JΛ∗
0γ, JΛ∗

0g. With this setting,
J∗0g = JΛ∗

0β = JΛ∗
0γ = ∅ means that MPCC-SC holds. For simplicity, we skipped

the arguments (x, y, λ) in the active index sets.

Now, we will consider solutions (x, y, λ, α, β, γ, µ) of the previous system for
perturbed functions f = f̂(x, y)+bT (x, y), φ = φ̂(x, y)+cTφy, vi = v̂i(x, y)+cTvi

y+
dvi
, gj = ĝj(x, y) + dgj

. We have to distinguish between two cases corresponding
to α = 0 and α 6= 0.

Case α 6= 0: We assume ‖α‖ > 1
N

, for some fixed N ∈ N. For simplicity we
will consider J0 = {1, 2, . . . , l1}, JΛ0 = {l1 + 1, . . . , l2}, Λ0 = {l2 + 1, . . . , l},
J0g = {1, 2, . . . , q1}, JΛ∗

0β = {l1 + 1 . . . , l3}, JΛ∗
0γ = {l4, . . . , l5} and

J∗0g = {1, . . . , q2}, for some 0 ≤ l1 ≤ l3 ≤ l2 ≤ l and l1 ≤ l4 ≤ l5 ≤ l2, q2 ≤ q1.
Taking the Jacobian with respect to the variables and parameters, we find
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∂x ∂y ∂λ ∂α ∂β ∂γ ∂µ ∂b ∂cT
φ ∂cT

v ∂dvJ0v
dgJ0g

⊗ ⊗ ⊗ ⊗ ⊗ 0 ⊗ In+m 0 ⊗ 0

⊗ ⊗ 0
[∇yv1]T

...
[∇yvl]T

0
0

Il−l1
0 0 0 Ω 0

⊗ ⊗ ⊗ 0 0 0 0 0 Im ⊗ 0
⊗ ⊗ 0 0 0 0 0 0 0 ⊗ Il2 |0|0|0
0 0 0|Il−l1 0 0 0 0 0 0 0 0
⊗ ⊗ 0 0 0 0 0 0 0 0 0|0|Iq1 |0
0 0 0 0 0|Iβ∗ |0 0 0 0 0 0 0
0 0 0 0 0 0|Iγ∗ |0 0 0 0 0 0
0 0 0 0 0 0 Iµ∗ |0 0 0 0 0

(5.2.9)

where Ω =

α
T 0 0

. . .

0 0 αT

 has l rows and β∗ = l3 − l1, µ
∗ = q2, γ

∗ = l2 − l4.

Evidently, ‖α‖ > 1
N

implies α 6= 0 and Ω has rank l. So, it follows directly that the
rows of the matrix (5.2.9) are linearly independent. Then, by the Parameterized
Sard Lemma, for almost every b, cφ, dv, dg, cv, the Jacobian matrix of the system
(5.2.8), with respect to variables (x, y, λ) and multipliers (α, β, γ, µ), has rank
n+m+ l+m+ |J0v|+ |JΛ0|+ |Λ0|+ |J0g|+ |β∗|+ |µ∗|+ |γ∗|, equal to the number of
rows, at all solutions of the system with ‖α‖ > 1

N
. But this rank cannot be greater

than the number n+m+l+m+ |J0|+ |JΛ0|+ |JΛ0|+ |Λ0|+ |J0g|+ |β∗|+ |µ∗|+ |γ∗|
of involved variables. So, in view of J0 ∪ JΛ0 = J0v:

|β∗|+ |µ∗|+ |γ∗| = 0.

i.e. MPCC-SC holds.
Now, we want to prove the regularity of C = ∇2

(x,y,λ)L|T(x,y,λ)MKKTBL
, the Hessian

matrix at the solutions of the perturbed system (5.2.8) with ‖α‖ > 1
N

. In view
of Proposition 2.1.1 it is equivalent to prove the regularity of:

B =

(
A B
BT 0

)
, (5.2.10)

where A = ∇2
(x,y,λ)L(x, y, λ, α, β, γ, µ) and B is the matrix with the gradients of

the active constraints as columns.

Note that B is the upper left part of the matrix (5.2.9), formed by the rows 1
to 6, and the columns corresponding to the derivatives ∂(x,y,λ,α,β,γ,µ). So it is non-
singular. It is well known that the regularity of B is equivalent to the fulfillment
of MPCC-LICQ and MPCC-SOC.
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Taking all finitely many possible combinations of active index sets, it follows
that, for almost every linear perturbation of (f, φ, v, g), the solutions of the system
(5.2.5) with ‖α‖ > 1

N
are non-degenerate critical points.

By considering the intersection ∩N∈N of all these sets of perturbations, we
obtain for almost every linear perturbation the non-degeneracy condition at all
critical points with α 6= 0.
Case α = 0: Now we will consider the case of solutions with α = 0. This implies
γi = 0, i ∈ JΛ0 ∪ Λ0, see system (5.2.8). Then for some (β, µ) ∈ R|J0v |+|J0g |, the
following system has a solution (x, y, λ):

∇(x,y)f(x, y)−
∑

i∈J0v

βi∇(x,y)vi(x, y)−
∑

j∈J0g

µj∇(x,y)gj(x, y) = 0,

∇yφ(x, y)−
l∑

i=1

λi∇yvi(x, y) = 0,

vi(x, y) = 0, i ∈ J0 ∪ JΛ0,
λi = 0, i ∈ JΛ0 ∪ Λ0,

gj(x, y) = 0, j ∈ J0g.
(5.2.11)

As the set J0v(x, y) = J0(x, y, λ)∪JΛ0(x, y, λ) does not depend on the particular
choice of λ, this system can be decomposed into two parts. Firstly the system in
(x, y, β, µ):

∇(x,y)f(x, y)−
∑

i∈J0v

βi∇(x,y)vi(x, y)−
∑

j∈J0g

µj∇(x,y)gj(x, y) = 0,

vi(x, y) = 0, i ∈ J0 ∪ JΛ0,
gj(x, y) = 0, j ∈ J0g.

(5.2.12)
In the second part, for a given solution (x, y) of system (5.2.12), the vector λ has
to solve the following linear system of equalities and inequalities.

φy(x, y)−
∑

i∈J0v(x,y)

λi∇yvi(x, y) = 0, (5.2.13)

λ ≥ 0.

Note that, for any solution (x, y, β, µ) of the system (5.2.12), the vector (x, y) is
a critical point of the standard problem:

min f(x, y)
s.t. vi(x, y) ≥ 0, i = 1, . . . , l,

gj(x, y) ≥ 0, j = 1, . . . , q.
(5.2.14)

with corresponding multipliers β and µ.
By Caratheodory’s theorem, if the system (5.2.13) is solvable for (x, y), we

can choose a solution λ∗, such that
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the vectors ∇yvJ0(x,y,λ∗)(x, y) are linearly independent. (5.2.15)

So, in the system (5.2.11) we can assume, w.l.o.g., that the vectors ∇yvi,
i ∈ J0(x, y, λ) are linearly independent. Note that J0(x, y, λ) may be the empty
set.

We turn back to the system (5.2.11), where f, φ, g, v are linearly perturbed
as in the first part of the proof. We will assume (as in system (5.2.8)) that some
multipliers are zero, e.g., βi = 0, µj = 0, i ∈ JΛ∗

0β, j ∈ J∗0g, with |JΛ∗
0β| = β∗

and |J∗0g| = µ∗. So, the critical points will be described by means of the system
(5.2.11) and the previous equations for the multipliers (βi, µj). The Jacobian of
the (augmented) system with respect to variables, multipliers and perturbation
parameters has now the form (see also (5.2.9) for the case α 6= 0):

∂x ∂y ∂λ ∂β ∂µ ∂b ∂cTφ ∂dvi
∂dgi

⊗ ⊗ 0 ⊗ ⊗ In+m 0 0 0
⊗ ⊗ ⊗ 0 0 0 Im 0 0
⊗ ⊗ 0 0 0 0 0 I|J0∪JΛ0||0 0
0 0 0|I|JΛ0∪Λ0| 0 0 0 0 0 0
⊗ ⊗ 0 0 0 0 0 0 I|J0g ||0

0 0 0
Il4 0 0 0
0 0 Il3−l1 0

0 0 0 0 0

0 0 0 0 Iµ∗ 0 0 0 0
(5.2.16)

Again we assumed J0 = {1, 2, . . . , l1}, JΛ0 = {l1+1, . . . , l2}, Λ0 = {l2+1, . . . , l},
J0g = {1, 2, . . . , q1}, JΛ∗

0β = {1, . . . , l4}∪{l1+1 . . . , l3}, and J∗0g = {l1+1, . . . , q2},
for some l4 ≤ l1 ≤ l3 ≤ l2 ≤ l, q2 ≤ q1. Using our standard argument, we
conclude that, for almost every perturbation (b, cφ, dv, dg), the Jacobian matrix
with respect to the variables and multipliers (x, y, λ, β, µ) has full row rank. So
the number of variables is greater than or equal to the number of equations, i.e.:

n+m+l+|J0∪JΛ0|+|J0g| ≥ n+m+m+|J0∪JΛ0|+|JΛ0∪Λ0|+|J0g|+|β∗|+|µ∗|

or, equivalently,

|J0| ≥ m+ |β∗|+ |µ∗|.
In particular |J0| ≥ m, but our assumption that ∇yvi, i ∈ J0, are linear indepen-
dent, see (5.2.15), yields |J0| ≤ m. So,

|J0| = m and |β∗| = |µ∗| = 0. (5.2.17)

To prove the statement concerning MPCC-SOC for the case α = 0, see BL-2 in
Theorem 5.2.2, we reconsider the original MPCC-problem (5.1.3) and show that
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the matrix B =

(
A B
BT 0

)
is regular, where A = ∇2

(x,y,λ)L(x, y, λ, α, β, γ, µ)

and the columns of B are given by the gradients of the active constraints. From
the rank condition for matrix (5.2.16) it follows that the square matrix, composed
by the row blocks 1, . . . , 5, and the columns corresponding to ∂(x,y,λ,β,µ), is non-
singular. We will denote this matrix by:

A′ =


⊗ ⊗ 0 ⊗ ⊗
⊗ ⊗ ⊗ 0 0
⊗ ⊗ 0 0 0
0 0 0|I|JΛ0∪Λ0| 0 0
⊗ ⊗ 0 0 0

 .

Note that B can easily be constructed from A′ as follows: we add the partial
derivatives corresponding to the equations ∇yvJ0α = 0, ∇yvJΛ0∪Λ0α = γJΛ0∪Λ0 ,
as new rows and the derivatives w.r.t. α and γ as new columns. Exchanging
some rows and columns we have:

B = I1

A′ ⊗ 0
0 ∇yvJ0 0
0 ∇yvJΛ0∪Λ0 I|JΛ0∪Λ0|

 I2,

where I1 and I2 are appropriate (non-singular) permutations matrices. As ∇yvJ0

is a non-singular matrix, see (5.2.15) and (5.2.17), the regularity of A′ and B are
equivalent. This means that, the MPCC-SOC condition holds.

2

From the proof of Theorem 5.2.1 and Theorem 5.2.2 we also obtain the following
fact.

Corollary 5.2.1 For almost all perturbations of (f, φ, v1, . . . , vl, g1, . . . , gq), lin-
ear in (f, v1, . . . , vl, g1, . . . , gq) and quadratic in φ, any critical point (x, y, λ) of
the corresponding problem, PKKTBL with associated multiplier α 6= 0 (see system
(5.2.5)) is isolated and non-degenerate in the MPCC sense, see Chapter 4.

We combine the generic properties of the previous results in a definition.

Definition 5.2.1 A bilevel problem PBL is called KKT-regular if its correspond-
ing KKT relaxation PKKTBL has the regularity properties of the generic class in
Theorem 5.2.1 and Theorem 5.2.2.

As a direct consequence of this definition we obtain the following result.

Corollary 5.2.2 For almost all perturbations of (f, φ, v1, . . . , vl, g1, . . . , gq), lin-
ear in (f, v1, . . . , vl, g1, . . . , gq) and quadratic in φ, the problems PBL are KKT-
regular.
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We end up with some additional information on the relation between the original
problem PBL and the corresponding relaxation PKKTBL in the generic case. In all
cases we assume that PBL is KKT-regular. For local minimizers with α 6= 0 the
following holds.

Corollary 5.2.3 Let PBL be a KKT-regular problem and let (x, y, λ) be a non-
degenerate local minimizer of the corresponding program PKKTBL in (5.1.3) with
multiplier α 6= 0. Then the strong-MFCQ condition holds at y w.r.t. the lower
level problem Q(x).

Under these conditions, if (x, y) is a feasible point of problem PBL, then it is
a local minimizer of PBL of order 1 or 2.

Proof . Recall from Corollary 5.2.1 that a non-degenerate critical point of (5.1.3)
with α 6= 0 is isolated. Assume now that two lower level multipliers, λ 6= λ1 exist
w.r.t. Q(x). Then for δ ∈ [0, 1] the points (x, y, (1−δ)λ+δλ1) will also be feasible
points of problem (5.1.3) with the same minimal value of the objective function
f(x, y). So, for δ small enough (x, y, (1− δ)λ+ δλ1) will be a local minimizer of
problem PKKTBL, and this contradicts the fact that (x, y, λ) is an isolated critical
point of PKKTBL. So strong-MFCQ holds.

Now we will show that the local minimizer condition is satisfied. Note that in
this case (α 6= 0) (x, y, λ) is a non-degenerate critical point in the MPCC-sense.
Then, by Theorems 4.4.3 and 4.4.4, it is a (locally unique) minimizer of order 1 or
2 for PKKTBL. Moreover, strong-MFCQ holds in the lower level problem Q(x). As
(x, y) is a feasible point of PBL, i.e., y solves Q(x), and MFCQ holds at y ∈ Y (x),
locally MBL ⊂ MKKTBL|Rn×Rm , where MKKTBL|Rn×Rm is the projection of the set
MKKTBL into the (x, y)-space. In view of the fulfillment of the strong-MFCQ
condition, the multipliers associated to (x, y) ∈ MBL, near to (x, y) are close to
λ. Altogether, this implies that the point (x, y) is a (locally unique) minimizer
of order 1 or 2 for PBL.

2

Now let (x, y, λ) be a local minimizer of (5.1.3) (and thus a critical point of
PKKTBL) with associated multiplier α = 0. Recall that we assume that PBL is
KKT-regular. Therefore, it satisfies the conditions given in BL-2, see Theorem
5.2.2. In particular |J0v(x, y)| ≥ m.

First we consider the case |J0v(x, y)| = m. As rank(∇yvJ0v(x,y)(x, y)) = m =

|J0v(x, y, λ)|, LICQ is satisfied for Q(x) at y and λ is the unique solution of
system (5.2.13). This implies that MPCC-SC and MPCC-SOC hold at (x, y, λ),
see condition BL-2 in Theorem 5.2.2. Consequently, (x, y, λ) is an isolated critical
point of problem (5.1.3). Using this fact and the same ideas as in the proof of
Corollary 5.2.3, we obtain the following result.
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Corollary 5.2.4 Let PBL be a KKT-regular problem and let (x, y, λ) be a non-
degenerate local minimizer of the corresponding program PKKTBL in (5.1.3) with
multiplier α = 0 and rank(∇yvJ0v(x,y)(x, y)) = |J0v(x, y)| = m. Then LICQ holds
at y w.r.t. the lower level problem Q(x).

Under these hypotheses, if (x, y) is a feasible point of problem PBL, then it is
a local minimizer of PBL of order 1 or 2.

Now we consider the case that (x, y, λ) is a local minimizer of PKKTBL, with
α = 0, where strong-MFCQ fails at Q(x) w.r.t. y, hence |J0v(x, y)| > m.
Then the set of solutions of the system (5.2.13) is a polyhedron of dimension d,
d ≤ |J0v(x, y)|−m. We will denote this polyhedron by R(x, y). Note that the ver-
tices ofR(x, y) are given by those solutions λ∗ such that rank(∇yvJ0(x,y,λ∗)(x, y)) =
|J0(x, y, λ

∗)| = m.
For each λ∗ ∈ R(x, y), the point (x, y, λ∗) is a critical point of PKKTBL. In

this situation the following bad behavior may occur: the points (x, y, λ) with
λ ∈ R(x, y) and JΛ0(x, y, λ) = ∅, i.e., λ is in the relative interior of R(x, y),
are local minimizers of PKKTBL, but if λ is a vertex of R(x, y), the point (x, y, λ)
is no longer a local minimizer. This means, in particular, that the set of local
minimizers may not be closed. We give an example:

Example 5.2.1

min−x+ y
s.t. y solves Q(x) : min y

s.t. y ≥ 0,
x ≥ 0.

Note that the corresponding KKT relaxation is

min−x+ y
s.t. 1− λ1 = 0,

y ≥ 0,
x ≥ 0,

λ1, λ2 ≥ 0,
yλ1 = 0,
xλ2 = 0.

Here, at the minimizer (x, y) = (0, 0), we have J0v(x, y) = {1, 2}. So
|J0v(x, y)| = 2 > 1 = m. The points (x, y, λ1, λ2) = (0, 0, 1, λ2), with λ2 > 0,
are clearly local minimizers of the KKT relaxation, with the same value of the
objective function, f(0, 0) = 0. However, if we take (λ1, λ2) = (1, 0), the ver-
tex solution of the corresponding system (5.2.13) (for (x, y) = (0, 0)) the point
(0, 0, 1, 0) is no longer a local minimizer. Indeed, when letting x > 0, the value
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of the objective function will be smaller. Note that (0, 0) is not a local minimizer
of the original bilevel problem.

In the case where (x, y, λ) is a local minimizer of PKKTBL, with α = 0, and
such that strong-MFCQ fails for y at Q(x), in comparison with Corollaries 5.2.3
and 5.2.4, we only have the following weaker result.

Corollary 5.2.5 Let PBL be a KKT-regular problem and let (x, y, λ) be a local
minimizer of PKKTBL, with α = 0, such that rank[∇vJ0(x,y,λ)(x, y)] = |J0(x, y, λ)| =
m (i.e. λ is a vertex solution of system (5.2.13)) and strong-MFCQ fails for y
at Q(x). Then (x, y, λ) is an isolated local minimizer of PKKTBL (5.1.3) of order
2, in the following sense: There exists κ, κ > 0, such that for all (x, y) near
(x, y), with (x, y, λ) ∈ MKKTBL for some λ satisfying λJ0(x,y,λ) > 0, we obtain

f(x, y)− f(x, y) ≥ κ‖(x− x, y − y)‖2.

Proof . At a local minimizer (x, y, λ) the multipliers βJΛ0 , γJΛ0 , µJ0g are non-
negative and the Hessian of the Lagrangean of problem (5.1.3), should be positive
semi-definite on T(x,y,λ)MKKTBL, i.e., ∇2

(x,y,λ)L(x, y, λ, α, β, µ, γ)|T(x,y,λ)MKKTBL
� 0,

see the end of Section 4.3. In this case in view of α = γ = 0 we have:

∇2
(x,y,λ)L(x, y, λ, α, β, µ, γ) =

(
∇2

(x,y)L̂(x, y, β, µ) 0

0 0

)
where

L̂(x, y, β, µ) = f(x, y)−
∑

i∈J0(x,y,λ)∪JΛ0(x,y,λ)

βivi(x, y)−
∑

j∈J0g(x,y)

µjgj(x, y).

Now we will construct the tangent subspace T(x,y,λ)MKKTBL. Recall that, by defi-
nition, it is the tangent subspace of the manifold described by the system (5.2.2).
As can be easily seen, this sub-space is generated by the k = n − |J0g| − |JΛ0|

columns of the matrix

 V
�

0l−m

 where the k columns of V form a basis of the

subspace tangent to ∇(x,y)vJ0v(x,y)(x, y),∇(x,y)gJ0g(x, y) and � is the m×k-matrix
solving

∇yvJ0(x,y,λ)(x, y)
T� = −∇(x,y)[∇yφ−

l∑
i=1

λi∇yvi(x, y)]
TV.

As a consequence

∇2
(x,y,λ)L(x, y, λ, α, β, µ, γ)|T(x,y,λ)MKKTBL

= V T∇2
(x,y)L̂(x, y, β, µ)V � 0.
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But λ is such that rank[∇vJ0(x,y,λ)(x, y)] = |J0(x, y, λ)| = m and for these critical
points MPCC-SOC holds, see Condition BL-2 in Theorem 5.2.2. So

∇2
(x,y,λ)L(x, y, λ, α, β, µ, γ)|T(x,y,λ)MKKTBL

= V T∇2
(x,y)L̂(x, y, β, µ)V is positive definite.

(5.2.18)
Recall that in case α = 0 the regularity means µj, βi 6= 0, for all j ∈ J0g(x, y),
i ∈ J0(x, y, λ) ∪ JΛ0(x, y, λ), see Condition BL-2 in Theorem 5.2.2. As (x, y, λ)
is a minimizer of PKKTBL, we must have:

βi, µj > 0, ∀i ∈ JΛ0(x, y, λ), j ∈ J0g(x, y). (5.2.19)

Let us consider the problem:

min f(x, y)

s.t. (x, y) ∈ M̂J0(x,y,λ)

M̂J0(x,y,λ) =

(x, y) ∈ Rn+m

∣∣∣∣∣∣
vi(x, y) = 0, i ∈ J0(x, y, λ),

vi(x, y) ≥ 0, i ∈ JΛ0(x, y, λ),
gj(x, y) ≥ 0, j = 1, . . . , q.


(5.2.20)

It is easy to see that (x, y) is a critical point of the previous problem with as-
sociated multipliers (β, µ). Since the Hessian of the Lagrangean of this problem
coincides with the Hessian of L̂(x, y, β, µ) and T(x,y)M̂J0(x,y,λ) is generated by
the columns of V , conditions (5.2.19) and (5.2.18) mean that (x, y) is a local
minimizer of problem (5.2.20) of order 2, i.e., there exists κ, κ > 0, such that,
locally,

f(x, y)− f(x, y) ≥ κ‖(x− x, y − y)‖2,∀(x, y) ∈ M̂J0(x, y, λ).

Now, we take (x, y) near (x, y) satisfying (x, y, λ) ∈ MKKTBL, for some λ,
λJ0(x,y,λ) > 0. By the feasibility of (x, y, λ) we have vJ0(x,y,λ)(x, y) = 0. Then

(x, y) ∈ M̂J0(x,y,λ) and the inequality f(x, y)− f(x, y) ≥ κ‖(x−x, y− y)‖2 holds.
2

Remark 5.2.1 Note that the condition obtained in Corollary 5.2.5 does not mean
that if (x, y) ∈MBL, then (x, y) is a local minimizer of PBL, as in the other cases.

We now summarize the genericity results of this section. Generically, MPCC-
LICQ holds for all feasible points of MKKTBL. At the local minimizers (x, y, λ)
of PKKTBL, with corresponding multipliers (α, β, γ, µ), the following cases may
appear generically:
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- α 6= 0: in this case for the lower level problem Q(x), strong-MFCQ holds
at y and (x, y, λ) is non-degenerate, as a critical point, in the MPCC-sense.

- α = 0: (x, y) is a non-degenerate critical point of problem (5.2.14) and
rank(∇yvJ0(x,y,λ)∪JΛ0(x,y,λ)) = m. Moreover there is some vertex solution
λ∗ of the system (5.2.13), such that (x, y, λ∗) is a critical point of PKKTBL,
|J0(x, y, λ

∗)| = m and rank(∇yvJ0(x,y,λ∗)(x, y)) = m. More precisely, recall
J0v(x, y) = J0(x, y, λ

∗) ∪ JΛ0(x, y, λ
∗), we have :

· in case |J0v(x, y)| = m:
λ is the unique solution of system (5.2.13). LICQ holds at y for Q(x)
and (x, y, λ) is a non-degenerate critical point of PKKTBL in the MPCC-
sense, i.e., MPCC-SOC and MPCC-SC are fulfilled.

· in case |J0v(x, y)| > m:
For the vertex solutions λ∗ of the system (5.2.13) it follows
JΛ0(x, y, λ

∗) 6= ∅. Moreover MPCC-SC fails for (x, y, λ∗) since
γi = 0, ∀i ∈ JΛ0(x, y, λ

∗), but MPCC-SOC holds.

5.3 A numerical approach for solving BL

In this part we will present a procedure for computing local minimizers of PKKTBL.
As already sketched at the end of Section 5.2, there may appear two different
cases: local minimizers corresponding to critical points where α = 0 or where
α 6= 0. First let us reconsider the reduced problem, see (5.2.14):

min f(x, y)
s.t. vi(x, y) ≥ 0, i = 1, . . . , l,

gj(x, y) ≥ 0, j = 1, . . . , q.
(5.3.1)

With the aid of this program we have the following possible method.

Conceptual method:

1. Possible solutions with α = 0: Try to compute a critical point (x, y) of
the reduced nonlinear program (5.3.1). If there is a corresponding solution
λ of system (5.2.13), then (x, y, λ) is a critical point of problem PKKTBL,
with α = 0. Now we calculate a vertex solution λ of system (5.2.13).
Then, generically, rank(∇yvJ0(x,y,λ)(x, y)) = |J0(x, y, λ)| = m. If conditions

(5.2.19) and (5.2.18) hold, (x, y, λ) is a local minimizer of problem (5.1.3).

2. Possible solutions with α 6= 0: Try to find a solution (x, y, λ) of the full
system (5.2.5), by applying the parametric smoothing approach of Chapter
4. If the procedure converges to a point (x, y, λ) with α = 0, try to identify
the active index sets J0v(x, y), J0g(x, y) and switch to step 1.
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The first step can be easily done by applying standard nonlinear optimization
techniques. Note that the program (5.3.1) will generically satisfy the non degen-
eracy conditions of nonlinear programming problems.

For the smoothing approach in Step 2, we solve the perturbed problem:

min f(x, y)

s.t. ∇yφ(x, y)−
l∑

i=1

λi∇yvi(x, y) = 0,

vi(x, y) ≥ 0, i = 1, . . . , l,
λi ≥ 0, i = 1, . . . , l,

λivi(x, y) = τ, i = 1, . . . , l,
gj(x, y) ≥ 0, j = 1, . . . , q

(5.3.2)

and let τ → 0+. So suppose that (x, y, λ) is a critical point of PKKTBL with
α 6= 0, where α is the vector of multipliers associated with the equality constraints
∇yφ(x, y) −

∑l
i=1 λivi(x, y). The existence of a sequence of local minimizers

(xτ , yτ , λτ ) of problem (5.3.2), and its rate of convergence follows from the analysis
in Section 4.6.

Proposition 5.3.1 Let (x, y, λ) be a strongly stationary point of the MPCC prob-
lem (5.1.3) such that MPCC-LICQ, MPCC-SC MPCC-SOC hold. Then there is a
sequence of stationary points (xτ , yτ , λτ ) of problem (5.3.2) converging to (x, y, λ)
with rate O(

√
τ).

Proof . It is a direct corollary of Theorem 4.5.1. 2

In the generic case, the hypotheses in Proposition 5.3.1 hold if strong-MFCQ is
fulfilled for y in Q(x). Sufficient conditions under KKT-regularity are that the
multiplier α corresponding to (x, y, λ) is not equal to 0 or that |J0v(x, y)| = m.
Unfortunately, around a stationary point (x, y, λ) with α = 0 and
JΛ0(x, y, λ) 6= ∅, we cannot guarantee the existence of a sequence of stationary
points (xτ , yτ , λτ ) of problem (5.3.2), converging to (x, y, λ), when τ → 0, as in
Propostion 5.3.1. In the following example we present a generic counterexample.

Example 5.3.1

minx+ y
s.t. y solves Q(x) : min y

s.t. y ≥ 0,
1− y ≥ 0,

x ≥ 0.
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The KKT approach leads us to the following problem:

minx+ y
s.t. 1− λ1 + λ2 = 0,

y ≥ 0,
1− y ≥ 0,

x ≥ 0,
λi ≥ 0, i = 1, 2, 3,
λ1y = 0,

λ2(1− y) = 0,
λ3x = 0.

This problem has the solution (x, y, λ) = (0, 0, 1, 0, 0) with multipliers
β1 = β2 = 1, α = γ1 = γ2 = γ3 = 0, and |JΛ0(x, y, λ)| = 1. Now, we con-
sider the smoothing parameterization of Section 4.6 and try to solve:

Pτ : minx+ y
s.t. 1− λ1 + λ2 = 0,

λ1 ≥ 0,
y ≥ 0,
λ2 ≥ 0,

1− y ≥ 0,
λ3 ≥ 0,
x ≥ 0,

yλ1 = τ,
(1− y)λ2 = τ,

xλ3 = τ,

for τ → 0+. Note that, for τ > 0 small enough, LICQ holds at any feasible point.
In fact, as the active index set is empty, the linear dependence implies that the
gradients of equations number 1, 8, 9 and 10 are linearly dependent, i.e., the
following system has a non-trivial solution (a, b, c, d):

0 0 0 λ3

0 λ1 −λ2 0
−1 y 0 0
1 0 1− y 0
0 0 0 x




a
b
c
d

 = 0.

x > 0 implies d = 0. By multiplying the third and fourth equations by λ2
1 and

−λ2
2, respectively, and using the feasibility condition, we obtain:

λ1bτ = λ2
1a,

−λ2cτ = λ2
2a.
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Summing up and using bλ1 − cλ2 = 0, we obtain a(λ2
1 + λ2

2) = 0. But λ1, λ2 > 0,
so a = 0 and this implies b = c = 0, a contradiction to (a, b, c, d) 6= 0.

Now we will prove by contradiction that there cannot exist a sequence of
critical points of Pτ converging to (0,0,1,0,0) when τ → 0+. The critical point
condition for problem Pτ reads:

1
1
0
0
0

 =


0 0 0 λ3

0 λ1 −λ2 0
−1 y 0 0
1 0 1− y 0
0 0 0 x



a
b
c
d


The condition x > 0 yields d = 0, so in the first equation we have 1 = 0
contradicting the existence of multipliers (a, b, c, d) solving the system.

We want to recall that there may exist feasible points (x, y) ∈ MBL, or even
minimizers (x, y) of problem PBL in (5.1.1), where the MFCQ condition is violated
in the lower level problem, see problem (5.2.6). So y may not satisfy the KKT
condition for Q(x). Clearly minimizers (x, y), such that the KKT condition fails
at y for Q(x), cannot be found by the KKT approach. Therefore from a practical
viewpoint it is advisable to use the FJ approach in which the KKT condition
(5.1.2) is replaced by the FJ optimality condition:

λ0∇yφ(x, y)−
l∑

i=1

λi∇yvi(x, y) = 0,

λ0 ≥ 0,
λi ≥ 0, i = 1, . . . , l,

vi(x, y) ≥ 0, i = 1, . . . , l,
λivi(x, y) = 0, i = 1, . . . , l,

λ0 +
l∑

i=1

λi = 1.

So we are lead to the problem:

min f(x, y)

s.t. λ0∇yφ(x, y)−
l∑

i=1

λi∇yvi(x, y) = 0,

λ0 ≥ 0,
λi ≥ 0, i = 1, . . . , l,

vi(x, y) ≥ 0, i = 1, . . . , l,
λivi(x, y) = 0, i = 1, . . . , l,

λ0 +
l∑

i=1

λi = 1,

gj(x, y) ≥ 0, j = 1, . . . , q.

(5.3.3)
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The FJ approach leads, up to some technical modification, to a problem with a
similar structure as in the KKT approach. We, therefore, expect similar genericity
results.

5.4 Numerical examples

In this section we will consider four bilevel problems to illustrate the solution
method given before. Three of them appear on the web page http://www-
unix.mcs.anl.gov/˜leyffer/MacMPEC. The fourth is the problem in Example 5.3.1.
We will present the numerical results obtained when solving the problem PKKTBL,
corresponding to the KKT approach applied to problem PBL. The solutions are
computed by means of the smoothing techniques described in Chapter 4. We use
the solver of nonlinear optimization problems of MATLAB, fmincon, to find a
critical point of the corresponding problem Pτ , τ → 0+. All programs run under
MATLAB 7.0.1.

We want to remark that the numerical results will be displayed with two
decimal places, even if the corresponding number is exact. For instance, the
values 12 and 12.00009 will be both written as 12.00.

The first problem originally appeared in Bard [2].

min(x1 − 5)2 + (2y + 1)2

s.t. x ≥ 0,
y ≥ 0,

y solves Q(x) : min(y − 1)2 − 1.5xy
s.t. 3x− y − 3 ≥ 0,

−x+ 0.5y + 4 ≥ 0,
−x− y + 7 ≥ 0.

The reported local minimizer is (x, y, λ) = (1, 0, 3.5, 0, 0). We obtained:

Method Smoothing method
Starting Solution (0.00, 0.00)

Start lower level multipliers (1.00, 1.00, 1.00)
Solution (1.00, 0.00)

Lower level multipliers (3.50, 0.00, 0.00)
Value of the obj. function 17.00

CPU time .20

The smoothing method converged to the minimizer. The error between the ap-
proximate and the real minimizer for τ = 9.54 e-07 is 0.39 e-06.

We solved the same problem using 50 random starting points on the intervals
[−1, 5]2 and [−20, 20]2. It performed as follows:
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Behavior\Interval [−1, 5]2 [−20, 20]2

Smoothing approach succeeded in 33 cases 16 cases

The second example, also appeared in [2], and reads:

min−x2
1 − 3x2 − 4y1 + y2

2

s.t.
x ≥ 0,
y ≥ 0,

−x2
1 − 2x2 + 4 ≥ 0,

y solves Q(x) : min y2
1 − 5y2

s.t. x2
1 − 2x1 + x2

2 − 2y1 + y2 + 3 ≥ 0,
x2 + 3y1 − 4y2 − 4 ≥ 0.

The numerical results are given in the next table:

Method Inner point
Starting solution (0.00, 0.00, 0.00, 0.00)

Start lower level multipliers (1.00, 1.00)
Solution (0.00, 2.00, 1.88, 0.91)

Lower level multipliers (0.00, 1.25)
Value of the objective function -12.67

CPU time 33.31

Again the smoothing approach converges to the reported minimizer,
(x, y, λ) = (0, 2, 1.875, 0.9062, 0, 1.25). The error between the obtained point
and the real minimizer is 4.97 e-05 for τ = 9.54 e-07.

Now, by considering 50 starting points randomly generated in the intervals
[−1, 5]4 and [−20, 20]4 we obtained:

Behavior\Interval [−1, 5]4 [−20, 20]4

Smoothing approach succeeded in 44 cases 45 cases

Note that in the previous examples, at the solutions we have JΛ0(x, y, λ) = ∅
i.e., strong SC holds (see Section 4.3). However, this condition may fail in generic
examples as in Example 5.3.1, where at the solutions (x, y, λ) = (0, 0, 1, 0, λ3),
λ3 ≥ 0 the corresponding multiplier satisfies α = 0. Recall the problem is

minx+ y
s.t. y solves Q(x) : min y

s.t. y ≥ 0,
1− y ≥ 0,

x ≥ 0.
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With the starting point (0,0,1,1,1), the smoothing approach obtained the
solution (2.17 e-09, 9.54 e-07, 1.00, 9.547 e-07, 438.59). As expected, at the
solution, the lower level multipliers became large. When τ is small, we observed
that the value of λ3 remained almost unchanged. In fact, for τ small, x = τ

438.593

is almost equal to 0. So, the point ( τ
438.593

, 0, 1, 0, λ3) solves the critical points
system within an acceptable error.

We end with a non-generic example, where MPCC-LICQ fails at the solution
point. This example can be found in [13]. The problem is

min−x2
1 − 2x1 + x2

2 − 2x2 + y2
1 + y2

2

s.t.
x ≥ 0,
y ≥ 0,

−x1 + 2 ≥ 0,
y solves Q(x) : min y2

1 − 2x1y1 + y2
2 − 2x2y2

s.t. .25− (y1 − 1)2 ≥ 0,
.25− (y2 − 1)2 ≥ 0.

In this case the minimizer is (.5, .5, .5, .5) and the lower level multipliers,
λ = (0, 0). At that point, MPCC-LICQ is not satisfied. Our approach behaved
surprisingly good with error of order

√
τ for τ ≥ 8.6736 e-19.
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Chapter 6

Equilibrium constrained
problems

6.1 Introduction

In this part we will consider the general case of optimization problems with
equilibrium constraints (see Section 1.1)

PEC : min f(x, y)
s.t. (x, y) ∈MEC

(6.1.1)

MEC =

(x, y) ∈ Rn × Rm

∣∣∣∣∣∣
gj(x, y) ≥ 0, j = 1, . . . , q,

y ∈ Y (x),
φ(x, y, z) ≥ 0, ∀z ∈ Y (x)


where Y (x) = {y ∈ Rm | vi(x, y) ≥ 0, i = 1, . . . , l}, f ∈ [C∞]1n+m, φ ∈ [C∞]1n+m+m,
(g1, . . . , gq) ∈ [C∞]qn+m and (v1, . . . , vl) ∈ [C∞]ln+m. For simplicity we omit equal-
ity constraints.

The following problems can be seen as special instances of PEC :

- Optimization problems with a VI constraint, see (1.1.8), where
φ(x, y, z) = Φ(x, y)T (z − y).

- Stackelberg Games min f(x, y) s.t. y ∈ S(x) where S(x) is the set of Nash
strategies.

- Bilevel problems, see Chapter 5.

- Generalized semi-infinite problem (GSIP), see [58].

As for the case of BL programs, the structure of the feasible set of PEC is
not suitable for classical optimization approaches. Instead, we again propose and
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analyze the KKT approach based on a transformation of the problems into a
program with complementarity constraints.

The chapter is organized as follows. Firstly we are interested in the topolog-
ical structure of the feasible set of PEC and we give some necessary condition
for convexity and closedness. In Section 6.3 we consider the MPCC problem
obtained by the KKT approach for solving PEC . We will show that one can-
not expect MPCC-LICQ to be fulfilled generically at all feasible points. Sec-
tion 6.4 deals with the special case where LICQ holds in Y (x), and φ, vi, gj,
i = 1, . . . , l, j = 1, . . . , q, satisfy certain convexity conditions. For the MPCC
form of PEC we prove that for almost all perturbations MPCC-LICQ is satisfied
at all feasible points and that the critical points are non-degenerate in the MPCC-
sense. In the last section we discuss the linear case, where the functions f, vi, gj,
i = 1, . . . , l, j = 1, . . . , q are linear and φ(x, y, z) is of the form [C(x, y)+d](z−y).
We derive the generic properties for these problems and present a numerical al-
gorithm.

6.2 Structure of the feasible set

In this section we are interested in conditions which guarantee that the feasible
set MEC of PEC is closed and/or convex. Note that in general, as in the case of
GSIP (see [58]), MEC need not to be closed. We give the illustrative example:

Example 6.2.1 Choose φ(x, y, z) = z − 3
2
, x ≥ 0, x ≤ π

2
, y ∈ Y (x) and

Y (x) = {z ∈ R | (z − 2)(z − sin(x))2 ≥ 0, z ≥ 1}.

The feasible set then reads:

MEC =

(x, y) ∈ R× R

∣∣∣∣∣∣
x ∈ [0, π

2
]

y ∈ Y (x),
z − 3

2
≥ 0, ∀z ∈ Y (x)

 .

We find

Y (x) =

{
[2,∞), for 0 ≤ x < π

2

{1} ∪ [2,∞), for x = π
2
,

leading to the feasible set MEC = [0, π
2
) × [2,∞), which is neither closed nor

open. Note that this is due to the failure of MFCQ at z = 1 with respect to
Y (π

2
). As a result, the mapping Y (x) is not lower semi-continuous at z = 1, since

there is no sequence (xk, zk) → (π
2
, 1), with zk ∈ Y (xk). Recall that a set valued

map Y : Rn → 2Rm
is called lower semi-continuous at x ∈ Rn if for all open sets

V ⊂ Rm such that V ∩ Y (x) 6= ∅ there is a neighborhood U of x such that for
all x ∈ U, Y (x) ∩ V 6= ∅. For more details we refer to Klatte and Kummer [36].

The next result provides sufficient conditions for closedness/convexity of MEC ,
see [7] and also [58] for GSIP.

128



Proposition 6.2.1 (cf. [7]) Suppose that Y (x) ⊂ K holds for all x ∈ Rn with
some compact set K, K ⊂ Rm. Assume that for all x ∈ Rn the condition MFCQ
holds at all z ∈ Y (x). Then the set valued mapping Y (x) is lower semi-continuous
and MEC is closed.

Suppose that for any x, the set Y (x) is convex. Let the functions φ(x, y, z)
and gj(x, y), j = 1, . . . , q be concave and let Y (αx1 + (1−α)x2) ⊂ αY (x1) + (1−
α)Y (x2), α ∈ [0, 1] hold for all x1, x2. Then MEC is convex.

Proof . It is well known that the MFCQ condition implies that Y (x) is lower
semi-continuous, see [36]. To prove that the feasible set MEC is closed, we have
to show:

for all (xk, yk) ∈MEC , (xk, yk) → (x, y), ⇒ (x, y) ∈MEC .

By continuity, the assumptions entail y ∈ Y (x) and gj(x, y) ≥ 0. As Y (x) is
compact, we can consider z∗ ∈ Y (x) such that

z∗ solves min
z
φ(x, y, z)

s.t. z ∈ Y (x).

But Y (x) is lower semi-continuous, so there is a sequence of points of zk ∈ Y (xk),
such that zk → z∗. Due to the feasibility assumption φ(xk, yk, zk) ≥ 0 and taking
limits k →∞, yields 0 ≤ φ(x, y, z∗) ≤ φ(x, y, z), ∀z ∈ Y (x). So, (x, y) ∈MEC .

For the second part, if (x1, y1) and (x2, y2), are two feasible points, by the con-
vexity assumptions, it follows (using standard arguments) that for any
α ∈ [0, 1], the point (αx1 + (1− α)x2, αy1 + (1− α)y2), is also feasible.

2

Let us write the program PEC equivalently in the bilevel form:

min
x,y,z

f(x, y)

s.t. gj(x, y) ≥ 0, j = 1, . . . , q,
y ∈ Y (x),

φ(x, y, z) ≥ 0,
z solves Q(x, y) : min

u
φ(x, y, u)

s.t. u ∈ Y (x).

(6.2.1)

Unfortunately, even under the strong assumptions of Proposition 6.2.1 we cannot
guarantee the convexity of the corresponding feasible set. The reason is that if
zi, i = 1, 2 are minimizers of the problems

min
u
φ(xi, yi, u)

s.t. u ∈ Y (xi)
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the point αz1 + (1− α)z2, α ∈ [0, 1] is not necessarily a minimizer of

min
u
φ(αx1 + (1− α)x2, αy1 + (1− α)y2, u)

s.t. u ∈ Y (αx1 + (1− α)x2).

For instance, by taking φ(x, y, z) = xz and Y (x) = [0, 1], the feasible set MEC is

MEC =

{
(x, y) ∈ R× R

∣∣∣ y ∈ [0, 1],
xz ≥ 0, ∀z ∈ [0, 1]

}
=

{
(x, y)

∣∣∣ y ∈ [0, 1],
x ≥ 0

}
.

The feasible set of the corresponding BL problem (6.2.1) reads:

MBL =

(x, y, z) ∈ R× R× R

∣∣∣∣∣∣∣∣
y ∈ [0, 1],
xz ≥ 0,

z solves Q(x, y) : min
u
xu

s.t. u ∈ [0, 1].


At x1 = y1 = 0 the set of minimizers of the lower level problem Q(0, 0) is [0,1].
Let us take z1 = 1. For x2 = 1, y2 = 0 the only solution of Q(1, 0) is z2 = 0.
However the convex combination (1− α)(x1, y1, z1) + α(x2, y2, z2) = (α, 0, 1− α)
is not feasible for 0 < α < 1 since z = (1 − α) does not solve the lower level
problem min

u
αu s.t. u ∈ [0, 1].

6.3 Genericity analysis of the KKT approach to

EC

Now we will consider the KKT-relaxation for equilibrium problems PEC in (6.1.1).
Firstly the equilibrium problem is written in the bilevel form (6.2.1). Then the
lower level minimization problem is replaced by the KKT condition for the min-
imizer z of Q(x, y). We obtain the MPCC problem:

PKKTEC : min
x,y,z,λ

f(x, y)

s.t. (x, y, z, λ) ∈MKKTEC

(6.3.1)

MKKTEC =


(x, y, z, λ) ∈
Rn+m+m+l

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

gj(x, y) ≥ 0, j = 1, . . . , q,
vi(x, y) ≥ 0, i = 1, . . . , l,

∇zφ(x, y, z)−
l∑

i=1

λi∇zvi(x, z) = 0,

λi ≥ 0, i = 1, . . . , l,
vi(x, z) ≥ 0, i = 1, . . . , l,

λivi(x, z) = 0, i = 1, . . . , l,
φ(x, y, z) ≥ 0.


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Recall that this problem is a relaxation of PEC in the following sense. If MFCQ
holds for the local minimizer z of Q(x, y), then (x, y, z, λ) ∈ MKKTEC for some
λ ∈ Rl

+. Using a notation similar to the previous chapter, for points

(x, y, z, λ) ∈MKKTEC, we introduce the active index sets:

J0v(x, y) = {i | vi(x, y) = 0}
J0(x, z, λ) =

{
i | vi(x, z) = 0, λi > 0

}
JΛ0(x, z, λ) =

{
i | vi(x, z) = λi = 0

}
(6.3.2)

Λ0(x, z, λ) =
{
i | vi(x, z) > 0, λi = 0

}
J0g(x, y) = {j | gj(x, y) = 0} .

We begin with a negative example which shows that, in contrast with the BL case,
MPCC-LICQ is no more generically fulfilled on the whole feasible set MKKTEC.

Example 6.3.1 Consider the problem PEC with feasible set MEC defined by
φ(x, y, z) = z + 1, v1(x, y) = y, v2(x, y) = x− y, x, y, z ∈ R and with q = 0, i.e.,
no constraints gj(x, y) ≥ 0.

So

MEC =

(x, y) ∈ R× R

∣∣∣∣∣∣
y ≥ 0,

x− y ≥ 0,
z + 1 ≥ 0, ∀z ∈ [0, x]


The set MKKTEC corresponding to the KKT relaxation PKKTEC is described by:

y ≥ 0,
x− y ≥ 0,

1− λ1 + λ2 = 0,
λ1, λ2 ≥ 0,

z ≥ 0,
x− z ≥ 0,
λ1z = 0,

λ2(x− z) = 0,
z + 1 ≥ 0.

(6.3.3)

Note that (x, y, z, λ1, λ2) = (0, 0, 0, 1, 0) is feasible. At this point the condition
MPCC-LICQ fails, because the gradients of the active constraints v1(x, y), v2(x, y),
v1(x, z), v2(x, z), i.e. the columns of the matrix

0 1 0 1
1 −1 0 0
0 0 1 −1
0 0 0 0
0 0 0 0


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are linearly dependent. Moreover this situation is stable under small perturba-
tions of the involved functions.

To see this, let us consider the set MKKTEC defined by the functions
v1(x, y) + ε1(x, y), v2(x, y) + ε2(x, y), φ(x, y, z) + ε3(x, y, z) where |εi(x, y)| � 1,
|∇εi(x, y)| � 1, i = 1, 2, |ε3(x, y, z)| � 1 and |∇ε3(x, y, z)| � 1. As in problem
(5.2.6), it can be seen that for fixed functions ε1(x, y), ε2(x, y) small enough there
exists (x∗, y∗) solving:

y + ε1(x, y) = 0,
x− y + ε2(x, y) = 0.

The KKT condition of the perturbed problem reads:

1 +
∂ε3
∂z

(x, y, z)− λ1(1 +
∂ε1
∂z

(x, z)) + λ2(1−
∂ε2
∂z

(x, z)) = 0, λ1, λ2 ≥ 0.

Let x = x∗, y = y∗ and z = y∗. As |∇εi| � 1, it follows 1 + ∂ε1
∂z

(x∗, y∗) > 0 and

1 + ∂ε3
∂z

(x∗, y∗) > 0. Then for (λ∗1, λ
∗
2) =

(
1+

∂ε3
∂z

(x∗,y∗,y∗)

1+
∂ε1
∂z

(x∗,y∗)
, 0

)
the point

(x, y, z, λ1, λ2) =

(
x∗, y∗, y∗,

1 + ∂ε3
∂z

(x∗, y∗, y∗)

1 + ∂ε1
∂z

(x∗, y∗)
, 0

)

is an element of the perturbed set MKKTEC. The gradients of the active con-
straints v1(x, y), v2(x, y), v1(x, z), v2(x, z) remain linearly dependent at the point
(x, y, z, λ) = (x∗, y∗, y∗, λ∗). So, MPCC-LICQ fails.

Remark 6.3.1 The previous example shows that EC problems are more compli-
cated than BL programs. While MPCC-LICQ holds generically for all feasible
points of the KKT-relaxation for BL-problems, the extra condition y ∈ Y (x) im-
plies that the MPCC-LICQ condition is not generically fulfilled for equilibrium
constrained problems.

In fact the failure of MPCC-LICQ is a consequence of the condition
z, y ∈ Y (x) and the violation of LICQ in problem Q(x, y). Note that if y = z
and ∇yvJ0v(x,y)(x, y) are linearly dependent (see (6.3.2)) the MPCC-LICQ condi-
tion does not hold at (x, y, z, λ) ∈ MKKTEC. Precisely, as shown in the previous
example, we cannot expect ∇yvJ0v(x,y) to have rank |J0v(x, y)| for all y ∈ Y (x).

6.4 Convex case

In this section we will consider the particular case of problems PEC such that the
lower level problem Q(x, y) is a convex problem. More precisely throughout this
section we will always assume:

132



CC-1 : For any (x, y), φ(x, y, z) is a strictly convex function of z.

CC-2 : For any x ∈ Rn, i = 1, . . . , l, vi(x, z) is a concave function of z.

CC-3 : For any x ∈ Rn, LICQ holds for all points y ∈ Y (x).

Under these assumptions, the problems PEC and PKKTEC are equivalent in the
sense that (x, y) ∈ MEC if and only if there exists some (z, λ) ∈ Rm × Rl such
that (x, y, z, λ) ∈MKKTEC, see problems (6.1.1) and (6.3.1).

We want to point out that the previous conditions exclude the bad behavior
of Example 6.3.1. We will show that the LICQ assumption CC-3 for Y (x) will
assure that for almost every linear perturbation of (g1, . . . , gq) MPCC-LICQ is
satisfied on MKKTEC.

Proposition 6.4.1 Let the functions (ĝ1, . . . , ĝq, v̂1, . . . , v̂l) ∈ [C∞]q+l
n+m, and

φ̂ ∈ [C∞]1n+m+m be fixed such that the conditions CC-1, CC-2, CC-3 hold. Then
for almost every (dg, bφ, cφ) ∈ Rq×Rm×R, the MPCC-LICQ condition holds for

all points of the feasible set MKKTEC corresponding to the functions φ = φ̂+bφz+cφ,
(g1, . . . , gq) = ((ĝ1, . . . , ĝq) + dg) and (v1, . . . , vl) = (v̂1, . . . , v̂l).

Proof . Let (x, y, z, λ) ∈ MKKTEC satisfy φ(x, y, z) = 0. Then, (x, y, z, λ) solves
the following system of equations:

gj(x, y) = 0, j ∈ J0g,
vi(x, y) = 0, i ∈ J0v,

∇zφ(x, y, z)−
l∑

i=1

λi∇zvi(x, z) = 0,

vi(x, z) = 0, i ∈ J0 ∪ JΛ0,
λi = 0, i ∈ JΛ0 ∪ Λ0,

φ(x, y, z) = 0,

(6.4.1)

for active index sets J0 = J0(x, z, λ), JΛ0 = JΛ0(x, z, λ), Λ0 = Λ0(x, z, λ),
J0v = J0v(x, y) and J0g = J0g(x, y), see (6.3.2). W.l.o.g. we assume
J0 = {1, . . . , l1}, JΛ0 = {l1+1, . . . , l2}, Λ0 = {l2+1, . . . , l} and J0g = {1, . . . , q1}.
The Jacobian matrix of the system (6.4.1) takes the form

∂x ∂y ∂z ∂λ ∂dg ∂bφ
∂cφ⊗ ⊗

0 0 Iq1|0 0 0⊗
∇T

y vJ0v(x, y) 0 0 0 0 0⊗ ⊗ ⊗ ⊗
0 Im 0⊗

0 ∇T
z vJ0∪JΛ0 0 0 0 0

0 0 0 0 | Il−l1 0 0 0⊗ ⊗ ⊗
0 0

⊗
1

(6.4.2)

Since by assumption CC-3, [∇yvJ0v(x, y)] has rank |J0v| and [∇zvJ0∪JΛ0(x, z)] is of
rank |J0∪JΛ0|, the matrix in (6.4.2) has full row rank. So, by the Parameterized
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Sard Lemma, for almost every dg, bφ, cφ, the matrix composed by the columns
corresponding to ∂x,y,z,λ has full row rank at all solutions (x, y, z, λ) of the system
(6.4.1). Consequently, the gradients of the active constraints (i.e. the rows
corresponding to ∂x,y,z,λ are linearly independent.
For the case φ(x, y, z) > 0, the same result follows after considering the system
(6.4.1) without the condition φ(x, y, z) = 0.
Finally by taking all possible combinations of the active index sets we recognize
that, for almost every (dg, bφ, cφ), the condition MPCC-LICQ holds at all feasible
points of the corresponding perturbed problem.

2

Remark 6.4.1 The result of Proposition 6.4.1 can be obtained for functions
φ̂ ∈ [C3]1n+m+m, (ĝ1, . . . , ĝq, ) ∈ [C2]qn+m, (v̂1, . . . , v̂l) ∈ [C3]ln+m. To do so, a
larger number of parameters has to be taken into account, cf. Lemma 2.3.1.

We are now interested in proving that MPCC-SC and MPCC-SOC are satisfied
at all critical points of PKKTEC for generic perturbations of the objective function.

Theorem 6.4.1 Let the problem functions (f̂ , ĝ, v̂) ∈ [C∞]1+q+l
n+m , φ̂ ∈ [C∞]1n+m+m

be fixed such that MPCC-LICQ holds at all feasible points of MKKTEC. Then
for almost every b ∈ Rn+m, the conditions MPCC-SC and MPCC-SOC hold
at all critical points (x, y, z, λ) of PKKTEC, defined by the perturbed functions
f(x, y) = f̂(x, y) + bT (x, y), (g, φ, v) = (ĝ, φ̂, v̂).

Proof . Let (x, y, z, λ) be a critical point of problem (6.3.1) with
φ(x, y, z, ) = 0. Then it satisfies the feasibility conditions given in (6.4.1) and for
some (α, β, γ,∆, δ, µ), it solves the system:


∇xf
∇yf

0
0

 =



∇x∇zφ −
l∑

i=1
λi∇x∇zvi ∇xvJ0∪JΛ0 0 ∇xφ ∇xvJ0v

∇xgJ0g

∇y∇zφ 0 0 ∇yφ ∇yvJ0v
∇ygJ0g

∇2
zzφ −

l∑
i=1

λi∇2
zzvi ∇zvJ0∪JΛ0 0 ∇zφ 0 0

−∇T
z v1

.

.

.

−∇T
z vl

0
0

0|IJΛ0∪Λ0
0 0 0




α
β
γ
∆
δ
µ

 (6.4.3)

with active index sets J0, JΛ0,Λ0, J0v, J0g, see (6.3.2). For the case φ(x, y, z) > 0,
we simply assume ∆ = 0.

We will only sketch the main ideas of the proof. Let us fix the active index
sets J0, JΛ0,Λ0, J0v, J0g. Firstly, by contradiction, we show that for almost every
b, there is no critical point such that γi = 0 holds for some i ∈ JΛ0. To do
so, let us consider a critical point with JΛ0

0 := {i ∈ JΛ0 | γi = 0}. From system
(6.4.3), we find −∇zvi(x, z)α = 0, i ∈ J0 ∪ JΛ0

0 and −∇zvi(x, z)α + γi = 0,
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i ∈ [JΛ0 \ JΛ0
0]∪Λ0. The variables γi can be eliminated and we can equivalently

replace the system:

−∇zvi(x, z)α = 0, i ∈ J0 ∪ JΛ0
0

−∇zvi(x, z)α+ γ = 0, i ∈ [JΛ0 \ JΛ0
0] ∪ Λ0

in (6.4.3) by:

−∇zvi(x, z)α = 0, i ∈ J0 ∪ JΛ0
0.

Considering this reduced system (with the perturbed function f = f̂ + bT (x, y))
and the feasibility condition (6.4.1), it can be proven that, under the hypotheses
of the theorem, the Jacobian with respect to variables (x, y, z, λ), multipliers
(α, β,∆, δ, µ) and the parameter b has full row rank. Then, by the Parameterized
Sard Lemma, it follows that for almost every b the Jacobian matrix with respect
to ∂x,y,z,λ,α,β,∆,µ,δ has full row rank at all solutions of the (reduced) system. This
means that the number of rows has to be smaller than or equal to the number of
columns and this fact appears to be equivalent to JΛ0

0 = ∅. So, for almost every
b, the set JΛ0

0 is empty as we wanted to prove.
Now we prove the fulfillment of the MPCC-SC. Let us assume that there are

some multipliers βi = 0, δk = 0 and µj = 0, for some i ∈ JΛ0, k ∈ J0v and j ∈ J0g

respectively. W.l.o.g. we take the active index sets as before and assume βi = 0,
i ∈ JΛ0

0β ⊂ JΛ0, δk = 0, k ∈ J0
0v ⊂ J0v and µj = 0, j ∈ J0

0g ⊂ J0g. If we consider
the whole system composed by these conditions, the critical point equations and
the feasibility conditions (see (6.4.3) and (6.4.1) respectively) it can be seen that
its Jacobian with respect to variables, multipliers and the parameter b has also
full row rank. The application of the Parameterized Sard Lemma means that for
almost every b the Jacobian matrix with respect to ∂x,y,z,λ,α,β,∆,µ,δ has full row
rank at all solutions of the considered system. But the number of rows has to be
smaller than or equal to the number of columns and by comparing their dimension
it follows ∆ 6= 0 if φ(x, y, z) = 0 and JΛ0

0β = J0
0v = J0

0g = ∅. So, the MPCC-SC
condition must be valid. Moreover for almost all perturbations bT (x, y) of f ,
the sub-matrix of the Jacobian with columns corresponding to ∂x,y,z,λ,α,β,γ,∆,µ,δ is
non-singular. This fact together with Proposition 2.1.1, implies that the Hessian
matrix of problem (6.3.1) restricted to the tangent subspace is regular. This
means that MPCC-SOC is satisfied. Finally, by taking all possible combinations
of active index sets into account, the result is proven.

2

6.5 Linear equilibrium constrained problems

In this section we will study a special case of PEC in which the KKT approach
leads to a MPCC-problem with only linear functions. We consider a PEC program
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(6.1.1) with linear functions f, vi, i = 1, . . . , l, φ(x, y, z) = [C(x, y) + d]T (z − y)
and q = 0,

PLEC : min cT (x, y)
s.t. (x, y) ∈MLEC

(6.5.1)

MLEC =

{
(x, y) ∈ Rn × Rm

∣∣∣∣ [C(x, y) + d]T (v − y) ≥ 0, ∀v ∈ Y (x),
y ∈ Y (x),

}
Y (x) = {y ∈ Rm | B(x, y) ≥ b}

where c ∈ Rn × Rm, B ∈ Rl×(n+m), b ∈ Rl, C ∈ Rm×(n+m) and d ∈ Rm. This
problem will be called linear equilibrium constrained problem, LEC for short.
Taking into account that φ(x, y, y) = 0 holds, the KKT approach leads to the
problem (see also Section 1.2)

PKKTLEC : min cT z
s.t. (z, λ) ∈MKKTLEC

(6.5.2)

MKKTLEC =

(z, λ) ∈ Rn+m+l

∣∣∣∣∣∣∣∣
Cz + d−BY Tλ = 0,

Bz ≥ b,
λ ≥ 0,

(Bz − b)Tλ = 0,


Here we use the abbreviation z = (x, y) ∈ Rn × Rm and BY ∈ Rl×m is the
submatrix of B corresponding to the variable y.

Obviously, problem (6.5.2) can be seen as a MPCC program (4.1.2) where the
functions (f, h, g, r, s) are linear. In this case, the lower level problem

Q(x, y) : min
v

(C(x, y) + d)T (v − y)

s.t. v ∈ Y (x)

is a linear problem in v and so

z ∈MLEC ⇔ (z, λ) ∈MKKTLEC for some λ ∈ Rl.

The problem PLEC has also been studied earlier in [7]. In this paper the struc-
ture of the feasible set of (6.5.1) was investigated in the generic case. In the
present section we analyze this problem from the viewpoint of the corresponding
complementarity constraint program PKKTLEC in (6.5.2).

In the next subsections we firstly present a genericity analysis of problem
(6.5.2) and based on this analysis, we then describe a solution method.
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6.5.1 Genericity results.

We will now prove that generically with respect to the problem data (c, B, b, C, d),
the condition MPCC-LICQ holds at all feasible points of PKKTLEC. We also give
conditions, under which, generically the local minimizers of PKKTLEC are of order
1 with respect to the z variable.

As before, the active index sets are defined as:

J0(z, λ) =
{
i | [Bz]i = bi, λi > 0

}
JΛ0(z, λ) =

{
i | [Bz]i = bi, λi = 0

}
Λ0(z, λ) =

{
i | [Bz]i > bi, λi = 0

}
The matrices BJ0 , BJΛ0 and BΛ0 denote submatrices of B composed by the rows
of B with indices in J0, JΛ0 and Λ0 respectively.

Proposition 6.5.1 In problem (6.5.2) let (c, B, C) be fixed. Then for almost all
(b, d) ∈ Rl+m the MPCC-LICQ condition is fulfilled at all feasible points.

Proof . The proof is similar to that of Lemma 5 in [53].
Consider a feasible point (z, λ) of (6.5.2). Then with active index sets

J0 = J0(z, λ), JΛ0 = JΛ0(z, λ), Λ0 = Λ0(z, λ) the following system is satis-
fied:

Cz + d−BY Tλ = 0
BJ0z − bJ0 = 0

BJΛ0z − bJΛ0 = 0

λJΛ0 = 0

λΛ0 = 0

(6.5.3)

The Jacobian of this system w.r.t. (z, λ) and the perturbation parameters (b, d)
is of the form:

∂z ∂λ ∂b ∂d

C −BY T 0 Im
BJ0

BJΛ0

0
−IJ0 0

0 −IJΛ0

0

0 IJΛ0∪Λ0 0 0

This matrix has full row rank. So, from the Parameterized Sard Lemma, Lemma
2.3.1, for almost all (b, d) the Jacobian of the (reduced) system with respect to
the variables (z, λ) has full row rank

m+ |J0|+ | JΛ0 | + | JΛ0 | + | Λ0 |= m+ l+ | JΛ0 |
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at all solution points of system (6.5.3). But this Jacobian has the gradients of
the active constraints as rows, i.e., MPCC-LICQ holds. Considering all finitely
many possible combinations of active index sets J0, JΛ0,Λ0, the result is proven.

2

Remark 6.5.1 In Proposition 6.5.1 we have shown that MPCC-LICQ holds
generically without the assumption of any extra constraint qualification in the set
{z ∈ Rn+m | Bz ≥ b} as needed in the general case (cf. condition CC-3 in Propo-
sition 6.4.1). It appears that, MPCC-LICQ will also hold generically without this
constraint qualification if the function φ satisfies the condition φ(x, y, y) = 0, for
all (x, y) ∈ Rn × Rm.

Next we are going to examine the generical properties of the critical points of
problem (6.5.2). In view of the analysis above, we can generically assume that
the MPCC-LICQ condition holds for the feasible set.

Let (z, λ) be a critical point of the problem (6.5.2). Then, for some
(α, β, γ) ∈ Rm+|J0∪JΛ0|+|JΛ0∪Λ0| it solves with active index sets J0, JΛ0,Λ0 the
following system:

(
c
0

)
−
(
CT

−BY

)
α−

(
[BT

J0∪JΛ0
]

0

)
β −

(
0

IJΛ0∪Λ0

)
γ = 0

Cz + d−BY Tλ = 0
BJ0z − bJ0 = 0

BJΛ0z − bJΛ0 = 0

λJΛ0∪Λ0 = 0.

(6.5.4)

We are going to investigate whether generically at a critical point of PKKTLEC

the conditions MPCC-SC and MPCC-SOC hold. Since the problem functions in
PKKTLEC are linear, MPCC-SOC means that the active gradients span the whole
Rn+m+l.

Note that if [Cn+1, . . . , Cn+m] is a symmetric matrix, the problem PKKTLEC is
equivalent to the KKT-formulation of the bilevel problem:

min cT (x, y)
s.t. y solves Q(x): min

y
yT [C1, . . . , Cn]x+ 1

2
yT [Cn+1, . . . , Cn+m]y + dTy

s.t. B(x, y) ≥ b.

Applying Theorem 5.2.2 we conclude that, for almost all linear perturbations
of the functions cT (x, y), yT [C1, . . . , Cn]x + 1

2
yT [Cn+1, . . . , Cn+m]y + dTy and
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B(x, y)−b, the critical points of the corresponding problem PKKTLEC, (z, λ), satisfy
one of the following two conditions (corresponding to α 6= 0 and α = 0):

- (z, λ) is a non-degenerate critical point in the MPCC-sense, see Definition
4.3.3.

- If (z, λ) is a critical point where the multiplier α corresponding to
CT z + d − BY Tλ = 0 is the zero vector, then z is a non-degenerate criti-
cal point of min cT z s.t. Bz ≥ b and there is some critical point (z, λ∗) of
PKKTLEC such that rank(BYJ0(z,λ∗)(z)) = |J0(z, λ

∗)| = m.

Introducing the polyhedron

R =

(z, λ) ∈ Rn+m × Rl

∣∣∣∣∣∣
Bz ≥ b,

Cz + d−BY Tλ = 0,
λ ≥ 0.

 (6.5.5)

we can prove our next result.

Theorem 6.5.1 For almost every (c, d, B, b), any critical point (z, λ) of problem
(6.5.2) (see (6.5.4)) with associated multipliers (α, β, γ) is of one of the following
two types:

LEC-1: If α 6= 0 then MPCC-LICQ, MPCC-SC and MPCC-SOC are fulfilled w.r.t.
the corresponding problem (6.5.2) and (z, λ) is a non-degenerate vertex of
the polyhedron R.

LEC-2: If α = 0 then rank[BYJ0(z,λ)∪JΛ0(z,λ)] = m and βi 6= 0 for all i ∈ JΛ0(z, λ)∪
J0(z, λ). Moreover, there is some λ∗ such that rank[BYJ0(z,λ∗)] = m =
|J0(z, λ

∗)|. If λ∗ is such that rank[BYJ0(z,λ∗)] = |J0(z, λ
∗)| = m, then

MPCC-SOC holds and (z, λ∗) is a non-degenerate vertex of the polyhedron
R.

Proof . The proof follows the same lines as the proof of the related Theorem 5.2.2.
Here we will only present the main ideas and the consequences of conditions BL-1
and BL-2 in this case.
For critical points (z, λ) with associated multiplier α 6= 0, as in Theorem 5.2.2,
we obtain that MPCC-LICQ, MPCC-SC and MPCC-SOC are fulfilled for almost
all data (c, d, B, b). These conditions and the linearity of the involved functions
imply that the active constraints generate the whole space Rn+m+l. Together
with the fulfillment of the MPCC-LICQ condition it follows that the number of
active constraints is exactly n+m+ l. So (z, λ) is a non-degenerate vertex of R.
If α = 0 holds at the critical point (z, λ), we can analogously, prove that for
almost every (c, d, B, b) the vector z is a non-degenerate critical point of the
problem:

min cT z
s.t. Bz ≥ b
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and that there exists a corresponding solution λ = λ of the system:

Cz + d−BY T
[J0∪JΛ0](z)λ = 0,

λ ≥ 0,
(6.5.6)

with rank(BYJ0(z,λ) = |J0(z, λ)| = m. Moreover, for these points the MPCC-SOC
condition is satisfied.

Now we prove that, under these generic conditions, the critical point (z, λ) is a
vertex of R. Again since BYJ0 is a regular matrix, the MPCC-SOC is equivalent
to the regularity of matrix (

0 BT
J0∪JΛ0

BJ0∪JΛ0 0

)
This implies |J0∪JΛ0| = n+m. As |J0| = m holds, it follows |JΛ0| = n and (z, λ)
is a point where n +m + l constraints are active. So, (z, λ) is a non-degenerate
vertex of R.

2

Now we consider local minimizers (z, λ) in the generic situation of Theorem 6.5.1
and apply the results obtained in Section 5.2 to the present problem PKKTLEC.

Corollary 6.5.1 A local minimizer (z, λ) of problem PKKTLEC where MPCC-LICQ,
MPCC-SC and MPCC-SOC holds is a local minimizers of order 1.

Proof . From the proof of Theorem 6.5.1 it follows that (z, λ) is a non degenerate
critical vertex of R, i.e. precisely n + m + l gradients are active. In view of
MPCC-SC, the assumptions of Theorem 4.4.3 are satisfied.

2

Under the assumptions of Corollary 6.5.1, for the original problem PLEC in (6.5.1)
we obtain the following result.

Corollary 6.5.2 Let (z, λ) be a local minimizer of problem PKKTLEC where MPCC-
LICQ, MPCC-SC and MPCC-SOC hold. Then z is a local minimizers of order
1 of problem PLEC.

Proof . Arguing as in the proof of Corollary 5.2.3, there is a neighborhood
V (z) × V (λ) of (z, λ) such that for any z ∈ MLEC ∩ V (z) we have
(z, λ) ∈ MKKTLEC ∩ [V (z) × V (λ)] for some λ ∈ Rl. But by Corollary 6.5.1,
the point (z, λ) is a local minimizer of order 1 of problem PKKTLEC. So, there is
some κ, κ > 0 such that for all (z, λ) ∈MKKTLEC ∩ [V (z)× V (λ)],

cT z − cT z ≥ κ
[
‖z − z‖+ ‖λ− λ‖

]
≥ κ‖z − z‖.
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This shows that z is a local minimizer of order 1 for problem PLEC .
2

In the generic case, the assumptions of the previous corollaries hold for a local
minimizer (z, λ) if the associated multiplier satisfies α 6= 0. In the case of a
local minimizer (z, λ) with α = 0, there exists λ∗ ≥ 0 solving system (6.5.6)
and rank(BYJ0(z,λ∗)) = |J0(z, λ

∗)| = m. The point (z, λ∗) is a critical point
and a vertex of R, but as in the situation of bilevel problems (see Chapter 5) it
may fail to be a local minimizer of problem PKKTLEC. Moreover the set of local
minimizers may be non-closed. The following example illustrates these facts, see
also Example 5.2.1:

min−x+ y
s.t. v − y ≥ 0, ∀v ∈ Y (x)

Y (x) =

{
y

∣∣∣∣ y ≥ 0,
x ≥ 0.

}
By writing (z1, z2) = z = (x, y), the corresponding PKKTLEC problem is of the
form:

min−z1 + z2

1− λ2 = 0
z1 ≥ 0
z2 ≥ 0
λ1 ≥ 0
λ2 ≥ 0

z1λ1 = 0
z2λ2 = 0

(6.5.7)

and coincides with the MPCC problem corresponding to the KKT relaxation of
the BL problem in Example 5.2.1. As already analyzed in that example, the
points (0, 0, λ1, 1), λ1 > 0 are local minimizers of the problem (6.5.7) with α = 0.
However, (0, 0, 0, 1) is not a local minimizer. Note that the set of local minimizers
is non-closed.

If (z, λ) is a vertex of R and a local minimizer of the problem PKKTLEC with α = 0,
by applying the same arguments as in the proof of Corollary 5.2.5 we obtain
that generically z is a non-degenerate local minimizer of the corresponding linear
problem (see (5.2.20) for the general case)

PJ0(z,λ) : min cT z

s.t. z ∈MJ0(z,λ),

(6.5.8)

MJ0(z,λ) =

{
z ∈ Rn+m

∣∣∣∣ BJΛ0(z,λ)z ≥ bJΛ0(z,λ),

BJ0(z,λ)z = bJ0(z,λ).

}
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So, generically, z is a local minimizer of order 1 of problem (6.5.8). Again by
Corollary 5.2.5, for all z near z with (z, λ) ∈ MKKTLEC for some λ ∈ Rl, we can
conclude that z is feasible for (6.5.8) such that locally cT z−cT z ≥ κ‖z−z‖ holds.
As a consequence we obtain:

Corollary 6.5.3 Generically all local minimizers (z, λ) of PKKTLEC with multi-
plier α = 0 and such that (z, λ) is a vertex of R, are local minimizers of order 1.
Moreover z is a local minimizer of problem PJ0(z,λ) in (6.5.8).

Even under the conditions of Corollary 6.5.3 we can not guarantee that z is a
local minimizer of the original problem PLEC as shown in the following example:

Example 6.5.1

minx1 + x2 − x3 − 2y
s.t. x1 + y ≥ 0,

x2 − y ≥ 0,
x3 + y ≥ 0,

x3 ≥ 0,

(v − y) ≥ 0, ∀v ∈ Y (x) =

v ∈ R

∣∣∣∣∣∣
x1 + v ≥ 0,
x2 − v ≥ 0,
x3 + v ≥ 0.


In this case the problem PKKTLEC is (we again set z = (x, y)):

PKKTLEC min z1 + z2 − z3 − 2z4

s.t. 1− λ1 + λ2 − λ3 = 0,
z1 + z4 ≥ 0,
z2 − z4 ≥ 0,
z3 + z4 ≥ 0,

z3 ≥ 0,
λ1, λ2, λ3, λ4 ≥ 0,
λ1(z1 + z4) = 0,
λ2(z2 − z4) = 0,
λ3(z3 + z4) = 0,

z3λ4 = 0.

As can easily be seen, the vertex (z, λ) = (0, 0, 0, 0, 0, 0, 1) ofR is a local minimizer
of PKKTLEC. However the vertex (z, λ) = (0, 0, 0, 0, 1, 0, 0) with the same z value,
is not. Note that, in fact, the point (0, 0, 0, 0) is not a local minimizer of the
original problem, since the points (x, y) = (0, 0, x3, 0), x3 > 0, are also feasible
points of PLEC with smaller objective function value.

This example shows the possible bad behavior of the local minimizers due to
the disjunctive structure of the set MKKTLEC. However we can state the following
result
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Proposition 6.5.2 Let for all vertex solutions λ of system (6.5.6) (z, λ) be a
local minimizer of PKKTLEC with multipliers (α, β, γ), α = 0, γ = 0. Let us assume
that BYI0 is a regular matrix for all I0 ⊂ {1, . . . , l}, |I0| = m (which is generically
fulfilled). Then z is a local minimizer of PLEC of order 1 i.e. for all z ∈ MLEC

near z, it holds that cT z − cT z ≥ κ‖z − z‖ for some κ > 0.

Proof . Let

J0(z) = {J0 ⊂ {1, . . . , l}| J0 = J0(z, λ
∗) for some vertex solution λ∗ of (6.5.6)}.

If zk → z, with zk ∈ MLEC , by taking associated lower level multiplier λk such
that (zk, λk) ∈MKKTLEC and BYJ0(zk,λk) has full rank |J0(zk, λk)|, it can be shown
that zk ∈MJ0 , see (6.5.8) for some J0 ∈ J0(z). So, around z,

MKKTLEC|Rn+m ⊂
⋃

J0∈J0(z)

MJ0 (6.5.9)

holds, where MKKTLEC|Rn+m is the projection of the set MKKTLEC onto the z-space
Rn+m.

Let (z, λ∗) ∈ MKKTLEC be such that λ∗ is a vertex solution of the system
(6.5.6). By assumption it is a local minimizer of order 1 of problem PJ0(z,λ∗), see
Corollary 6.5.3. Since MEC = MKKTLEC|Rn+m , the result now follows from (6.5.9).

2

If PKKTLEC, has a global minimizer, we can prove the existence of a vertex (z, λ)
of R, which is a global minimizer of the problem. Indeed, using the disjunctive
analysis we can guarantee that if problem PKKTLEC has a global minimizer (z, λ)
then, in particular, it should be a minimizer of:

P (JΛ0
0) min cT z

s.t. Bjz ≥ bj, λ = 0, j ∈ JΛ0
0 ∪ Λ0,

Bjz = bj, λ ≥ 0, j ∈ J0 ∪ JΛ0 \ JΛ0
0,

Cz + d−BY λ = 0,

for all JΛ0
0 ⊂ JΛ0(z, λ). As P (JΛ0

0) is a linear programming problem with a
finite solution, there is a vertex of the feasible set which is also a minimizer of
P (JΛ0

0) and feasible for problem PKKTLEC. So, it will be a global minimizer of
PLEC too.

6.5.2 Algorithm.

In this subsection we will sketch a projection algorithm for solving the MPCC
problem PKKTLEC obtained by applying the KKT-approach to the linear equi-
librium program PLEC . It is based on the genericity analysis of the previous
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subsection. Roughly speaking this algorithm proceeds by descent steps in the
direction of the projection of the objective function onto a polyhedral subset of
the feasible set.
The feasible set can be described in a disjunctive form as

MKKTLEC = ∪I0⊂{1,...,l}MI0

where

MI0 =

(z, λ) ∈ Rn+m+l

∣∣∣∣∣∣
[Bz]i = bi, λi ≥ 0, i ∈ I0,
[Bz]i ≥ bi, λi = 0, i ∈ {1, . . . , l} \ I0,

Cz + d−BY λ = 0.


In particular any feasible point (z, λ) ∈ MKKTLEC will be included in the polyhe-
dron:

R(z, λ) =

(z, λ) ∈ Rn+m+l

∣∣∣∣∣∣∣∣
[Bz]i = bi, λi ≥ 0, i ∈ J0(z, λ),
[Bz]i = bi, λi = 0, i ∈ JΛ0(z, λ),
[Bz]i ≥ bi, λi = 0, i ∈ Λ0(z, λ),

Cz + d−BY λ = 0,


which is a face of the polyhedron MI0 if J0 ⊂ I0 and Λ0 ⊂ {1, . . . , l} \ I0.
The idea of the algorithm is the following. First compute a feasible solution
(z0, λ0). Then, we consider the corresponding active index sets J0 = J0(z0, λ0),
JΛ0 = JΛ0(z0, λ0), Λ0 = Λ0(z0, λ0) and the associated polyhedron R(z, λ) of
dimension k = n− |JΛ0|.
Next we compute the projection s of the objective gradient −(c, 0) (in variables
(z, λ)) onto R(z, λ). The new point (z1, λ1) is computed by moving in this descent
direction s, as long as feasibility is maintained.
At (z1, λ1) a new constraint will become active and the set JΛ0 will increase
because either an index of J0(z0, λ0) or of Λ0(z0, λ0) will enter JΛ0(z1, λ1). We
consider the adjacent face (of MI0) of dimension k, corresponding to the deac-
tivation of an active constraint. For instance if i∗ ∈ J0(z0, λ0) ∩ JΛ0(z1, λ1), in
the associated adjacent face of MI0 only the index i∗ changes form J0 to Λ0. If
the projected objective function decreases in this face we repeat the procedure
with this k-dimensional face. In the other case, we move to the face of smaller
dimension R(z1, λ1). This is repeated until a vertex (z, λ) of R(z, λ) (and hence
of R, see (6.5.5)) is reached. Then we try to move to an adjacent vertex with
smaller objective value. As the objective function always decreases and there
only exists a finite number of faces and vertices, the method must find a local
minimizer of PKKTLEC after finitely many steps.

Conceptual algorithm

step 0: Find a feasible solution (z, λ) of PKKTLEC. Compute the active index sets
J0 = {i | [Bz]i = bi, λi > 0}, JΛ0 = {i | [Bz]i = bi, λi = 0} and
Λ0 = {i | [Bz]i > bi, λi = 0}.
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step 1: Let s = (sz, sλ) be the output of procedure Projection with index sets
J0, JΛ0,Λ0, see (6.5.11).

while | JΛ0 |< n

step 2: Let t be the solution of

max

t
∣∣∣∣∣∣
BΛ0 [z + tsz] ≥ bΛ0 ,

λi + tsλi ≥ 0, i ∈ J0,
t ≥ 0.

 (6.5.10)

If t < ∞, update [z, λ] = [z, λ] + t[sz, sλ]. Else exit because the objective
function is not bounded.

Consider the following possible cases:

step 3: In case Bi[z + tsz] = bi for some i ∈ Λ0, find output s of Projection with
J0 = J0 ∪ {i} , JΛ0 = JΛ0, Λ0 = Λ0 \ {i}.

1. If sλ,i > 0, update index sets: J0 = J0∪{i} , JΛ0 = JΛ0, Λ0 = Λ0\{i}
and goto 2. Else J0 = J0 JΛ0 = JΛ0 ∪ {i} Λ0 = Λ0 \ {i}.

2. Find s resulting from the procedure Projection with the new active
index sets.

step 4: If λi + tsλi = 0 for some i ∈ J0, find s output of Projection with
J0 = J0 \ {i} , JΛ0 = JΛ0, Λ0 = Λ0 ∪ {i}

1. If Bis > 0, update the index sets as J0 = J0 \ {i} , JΛ0 = JΛ0,
Λ0 = Λ0∪{i} and goto 2. Else J0 = J0\{i} JΛ0 = JΛ0,∪{i} Λ0 = Λ0.

2. Find s resulting from the procedure Projection with the new active
index sets.

end while.
Let (z, λ) be the computed vertex of R.

step 5 If there exists a neighboring vertex where the objective function decreases,
move to it and goto 5. Else stop, a local minimizer of PKKTLEC was obtained.

We add some comments on the different steps of the algorithm.
The procedure Projection computes the projection of [−c, 0|J0|] onto the subspace
defined by:

BJ0sz = 0,
BJΛ0sz = 0,

Csz −BY T
J0
sλ = 0.

(6.5.11)
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In step 0, we try to find an initial point by solving:

min cT z
Cz + d = 0

Bz ≥ b
(6.5.12)

The feasible set of this problem is obviously contained in MKKTLEC. Of course, this
problem may be infeasible although PKKTLEC may have feasible solutions (take for
instance problem (6.5.7)). If a finite solution was found, the algorithm start with
(z, 0) as initial feasible point.

Note that generically in (c, d, b) the solutions of problem (6.5.12) are isolated
and non-degenerate vertices of the polyhedron{

z ∈ Rn × Rm

∣∣∣∣ Cz + d = 0,
Bz ≥ 0

}
.

So at the starting solution (z0, 0), generically we will have |JΛ0(z0, 0)| = n and
(z0, 0) is a vertex of the polyhedronR and only step 5 will be performed. However
we included the other steps for the case that the starting point is computed in a
different way.

Roughly speaking, in step 5 at a vertex (x, λ) of R, we first calculate a new
direction s = (sz, sλ) obtained by deactivating one active constraint. The possible
active indexes are i ∈ J0 ∪ JΛ0 for [Bz]i = bi and i ∈ JΛ0 ∪ Λ0 for λi = 0. In
each case the new direction is calculated as follows:

Case [Bz]i = bi, i ∈ J0 [Bz]i = bi, i ∈ JΛ0

Directions
computed by

 BJ0 0
BJΛ0 0
C −BYJ0

 s =

e|J0|
i

0
0


 BJ0 0
BJΛ0 0
C −BYJ0

 s =

0|J0|
en

i

0



Case λi = 0, i ∈ JΛ0 λi = 0, i ∈ Λ0

Directions
computed by

 BJ0 0
BJΛ0 0
C −BJ0

 s =

0|J0|
0n

BYi

 BYJ0 0
BJΛ0 0
C BYJ0

 s =

 0
0

−BΛ0i


here el

j is the jth-unit vector in Rl.
If in this direction the objective function decreases, i.e. cT sz < 0, and for t∗
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solution of the problem (6.5.10) the point (z+t∗sz, λ+t∗sλ) is feasible, we change
to this new vertex. If for all possible n+ l active constraints this procedure fails,
we have found a local minimizer of PKKTLEC.
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Chapter 7

Final remarks

In the thesis we have examined the KKT approach for solving variational in-
equalities, bilevel problems and equilibrium constrained problems.

The KKT approach leads to a corresponding MPCC problem with a particu-
lar structure. As a solution method for the resulting MPCC programs, we have
studied the parametric smoothing approach Pτ , where τ is the smoothing pa-
rameter. We proved that for standard MPCC programs this method converges
under generic assumptions with a rate O(

√
τ). We have shown that generically

the parametric problem Pτ is JJT regular which allows to apply pathfollowing so-
lution strategies. We mainly concentrated on the theoretical basis of the method.
Some further practical research will be:

- A practical implementation of the smoothing approach with the aid of path-
following strategies.

- Adapt the known pathfollowing methods to track the set of solutions of a
one-parametric MPCC around the generic singularities.

For bilevel problems, we found out that unfortunately the MPCC problem ob-
tained by the KKT approach is not MPCC-regular. So we adapted the general
smoothing scheme in order to cover all possible candidate minimizers. The KKT
approach has the disadvantage that the minimizer of the KKT formulation may
not be a solution of the original bilevel problem (even if it is a feasible point). So
we can conclude that in practice instead of the KKT relaxation a FJ relaxation
should be used. We expect that our structural and genericity results for the KKT
approach can directly be carried over to the FJ approach. For the FJ approach,
research can be done in the following directions:

- Generic properties of the corresponding MPCC problem.

- Detailed analysis on the relation between the FJ relaxation and the original
bilevel problem
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- A numerical algorithm for this approach with satisfactory convergence prop-
erties under generic conditions.

The general equilibrium constrained program has a more difficult structure than
a bilevel problem. As a matter of fact, different from BL, for general equilibrium
constrained programs the constraint qualification required for the KKT method
is not generically fulfilled. Only for the convex case with extra constraint qual-
ifications in the lower level problem, the MPCC regularity holds generically. In
the special linear case we obtained results similar to the bilevel case.

Open questions are:

- The generic structure of general equilibrium constrained problems.

- The case of programs with variational inequality constraints.

- Implementation of the projection algorithm and its comparison with the
behavior of the corresponding method for solving linear BL.
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[2] J.F. Bard. Convex two-level optimization. Mathematical Programming,
40(1):15–27, 1988.

[3] J.F. Bard. Practical bilevel optimization. Algorithms and applications. Non-
convex Optimization and its Applications, 30. Kluwer Academic Publishers,
Dordrecht, 1998.

[4] M. S. Bazaraa, H. D. Sherali, and C.M. Shetty. Non linear programming
theory and Algorithms. John Willey and Sons, 1993.

[5] H. Y. Benson, D. F. Shanno, and R.J. Vanderbei. Interior-point methods
for non-convex programming: complementarity constraints. Technical re-
port, Operations Research and Financial Engineering Department, Prince-
ton University, 2002.

[6] H.Y. Benson, A. Sen, D. F. Shanno, and R. J. Vanderbei. Interior-point
algorithms, penalty methods and equilibrium problems. Technical report,
Operations Research and Financial Engineering, Princeton University, 2003.
ORFE-03-02.

[7] S. I. Birbil, G. Bouza, J. B. G. Frenk, and G. Still. Equilibrium con-
strained optimization problems. European Journal on Operational Research,
169(13):1108–1128, 2006.

[8] S. Braun and J.E. Mitchell. A semidefinite programming heuristic
for quadratic programming problems with complementarity constraints.
http://www.optimization-online.org/DB HTML/2002/12/579.html, 2002.

[9] C. Chen and O.L. Mangasarian. Smoothing methods for convex inequal-
ities and linear complementarity problems. Mathematical Programming,
71(1):51–69, 1995.

151



[10] X. Chen and M. Fukushima. A smoothing method for a mathematical pro-
gram with P-matrix linear complementarity constraints. Computational Op-
timization and Applications, 27(3):223–246, 2004.

[11] S. Dempe. Annotated bibliography on bilevel programming and mathe-
matical programs with equilibrium constrains. Optimization, 52(3):333–359,
2003.

[12] D. Dentcheva, R. Gollmer, J. Guddat, and J.J. Rückmann. Pathfollowing
methods in nonlinear optimization. II. Exact penalty methods. In Approxi-
mation & Optimization, 8, pages 200–230, Frankfurt am Main, 1995. Lang.

[13] F. Facchinei, J. Houyuan, and Q. Liqun. A smoothing method for mathe-
matical programs with equilibrium constraints. Mathematical Programming,
85(1):107–134, 1999.

[14] M. Flegel and C. Kanzow. A Fritz John approach to first order optimal-
ity conditions for mathematical programming with equilibrium constraints.
Optimization, 52(3):277–286, 2003.

[15] M. Fukushima, Z.Q Luo, and J.S. Pang. A globally convergent sequential
quadratic programming algorithm for mathematical programs with linear
complementarity constraints. Computational Optimization and Applications,
10(1):5–34, 1998.

[16] M. Fukushima and J.S. Pang. Convergence of a smoothing continuation
method for mathematical programs with complementarity constraints. In
Lecture Notes in Economics and Mathematical Systems, 477, pages 99–110,
Berlin, 1999. Springer Verlag.

[17] M. Fukushima and P. Tseng. An implementable active-set algorithm for com-
puting a B-stationary point of a mathematical program with linear comple-
mentarity constraints. SIAM Journal on Optimization, 12(3):724–739, 2002.

[18] R. Gollmer, U. Kausmann, D. Nowack, K. Wendler, and J. Bacallao Estrada.
Computerprogramm PAFO. Humboldt-Universitaet, Institut fuer Mathe-
matik, 2004.
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